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— « A B STRACT =~

The statistical equations for a compressible gas. are d@velbpad
in a general form. All the properties (density, velocity, pressure, .
internal emergy and temperature ; also viscosity, h@at.co@éuctivity; aaq
specific heats) arve considered to be turbulent and ave separated inté
macroscopic quantitieg,aad—flustuations.Vrreédémvig rataineagtg[makg:'
the most convenlent definitioas of these separations at aviaterhstége;

' rirst a ccmplete set of ecuations is ﬁerived fr@m Lhe geﬂeral :,
form, takiug as the fundamental macroscoplc qunntitlss the mean valuea

of the velocity VCL . ;he‘temperature 6' the density p and the

—

pressure P -.;7 s

Second the choice of’ the wost eouvenient £undameﬂta1 macroscopic

quaﬂtxties is discussed, vhich leads to the prOpoaed use of the mean L
_ values of tha mass~weighted velocity F’Wl._ P WI ; the internal energy

—

- per umit vclume Pe = Pe »' the density P .. .smd the pressure P .

The corresyonding equatxans have simpler Forms than the
preceding equations, then physical 1nterpretation is clearer, and the;
,appear to be more convenient for theoretical work, and probably for

’turbnlence maésuremants.
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L.- INTRODUCTION.-

The statistical eqnati@ns*QE incompraﬁsibte-turbuieﬁt*fiuiﬁs*ueré e
first written by BOUSSINESQ (1) and REYNOLDS (2),- averaging the equatiens
of mass and Naviex-Stokes equati@ns of moticn, the fluid being cgwsidered
a coutinuun. The dependent varisbles such as velocity and presaure, were
fegarded as consisting of the sum of a mean part, the average of these
qm&ﬂtitiesrwlthin a specified volume or time interval, and a fluctuating
. patt. ' : 4 ' ' o
L. r'. RICHARDSGN (), J.E. MILLER (4) A.D. YOUNG (5),

{ B SQUIRE (5), G.B. SCHUBAUER and C. M, TCHEN (6), J.0. HINZE (7). and
other ‘Authors followed the same precedure for compressible turbulent flow.'
»Hoygver it must be noticed thatf(G) ;W"Eixst, the hydredyn&mical equationsv
“are nonlinear, with the nonlinear térmé.go; pn1y>contaiﬂimg the velocity

: compohenéé'and their derivati&éé, such as was the case'fér incoﬁpreséiblé o
‘ flow, but also containing the producc of velocity by density. The latter
nust moreover satlsfy ‘the-conditions imposed by -the equacion of continuity
1 and- the equation of heat couduction. o ) -
o Secoﬂd2 1n an ingompreaSLble flcu the Reynclds equations have

N a”ferm~s imilar to the original Navxer«Sto&es equaticns, provided addltional
fictitious forces; called Reynolds stresses, are introduced. These stresses
~also characterize the turbulent frxctlon and. give the rate of praduction

~of turbulence when multiplied by mean. veloclty gradients. However, in a

, ccmpressible flow, such ricticious stressea are more complicated and,

' 1nvolve other roles In ﬁddithﬂ to the production of. turbulence .,wh”

Others Authors, “Th. HPSSELBBRG (8) G. DEDEBANT and Ph WEHRLE (9)9
Van MIEGHEM and L. DNFOUR (10), A.K. BLACKADAR (11), especially for atmos=
: phere, have derived equations for the motion of compressible turbulent
gases vhich are averaged (11) "weighting each velocity by the density, -
thereby defining the mean velocity as the specific mean momentum, and .
(they) have shown that this procedure leads to simpler forms of the hydro-

dynamic equations of mean motion"

Sl



) fthe equations have szmple forms, aud,simple physxcal meaning.

_ performance of measnrements.rr','

‘ The fields of applications of the mechanics of turbulent fluids ’
are extending rapidly to compressible flows and also to flows in which
the temperature turbulence is such that the fluctuations in the bulk

properties no longer can be neglected. Therefore we have written a set of

Aequatioas (12) for a compressible-gas, considered as a continuum, the -

velocities, den51ty, pressure, 1nternal energy and temperature of which

" are cemsidered to be turbulent. Furthermﬁre the viscosity, heat conductivity

and specific heau;are retained as variasbles so that they may be considered

turbulent also. The equatiuas are derived for mctions which are averaged

'by the mathoﬁ of densxty weighted veloclsies using averages of the mean

) imcmenﬁum, and also of the mean- specifxc intaxnal enexgy. The mean flux of ‘mass

and mean. iﬂternal energy due to turbulence, being null by definxtion,

The purpose of the present study is to develop a more general

Aset of analytical expressiens for a CompreSSlble turbulent gas which
_can be erd to make the cholce of ghe macroscopic quantltles that . glve

,for diffe:emt ‘fields of applicatxan, the most coavenlent form to the

quations, for mathematical treatmemt or ‘physical meanlng, and for the



I1.- STATISTICAL EQUATIONS OF BALANCE.-

= Eyenes

2d.- DFFINITIGNS AVERAGES , MAGROSCOPIC QUANTITIES -[4 L

Let us consider a fluzd usuaily a gaa,:attthe ccnvemtienal
scale guch that, by means of averages in time and in @pace Of the mnlecular 
movement , it may be considered as a continuum, 1ead1n9 to coatinuaus
qﬁantities derivable in time and in space 3 valocity Va. s denslty p »
pressure P . » internal energy e entropy S per unit mass, temperature € ;°
'and also tarbulk nr0pertles such as viscosity V8 , thermal conductxvityk »
3pecx£ic heats CP at censtant pressure and Cy at constant volume per ;_
unit maSS. Let Xd. be the external force campannnts per unit ma%s. Mechanical

'unitb wlll be uged.

Flows will be consiééred atﬁhigh'as well as at low épeeds,?andr
Wltn mederately large as well as small temperature variations.- Therefore o
ﬁ—lt s neceosary to retain.the eifects of - turbulence of velocity, pressure; ,:;
denszty, internal energy, ‘entropy, temperature, even external force, and
also the effects of turbulence of v13c031ty, thermal ccnductivity and -
sPecific heats. Turbulent varlatlons of Lhese quantities can no longer be Ti’v'

neglected in geﬂerdl analytxcal expxessioas,

These quantitles, uameky‘w 5 8re SO uomplex when they are
turbulent that they have to be treated by statist;cal methods. They are
tepresented by random functions of tlmg L and space Xa. in cartesian 3
coordluates with ‘the tunning indices o = 1 2, 3, and are separated into_7
twc parts the macroscopic quantity’VV and the raudom fluctuaclon W

‘ [1] - W VV+ W : SN
"The prob]em, therefore, concerns the determiuation of the macroscopic

quantxtles, 1nc1ud1ng the mean interact1ons with fluctuations.

The macroscopic quaﬁtities will be defined by means of éverages'

of the once averaged motiom over still larger scale.

The stochastic averages of W (pverscore) will Se uséd, in.

‘general i



- the £011<min8 rules are valdd : -

W=fw F(w) dw - with f F(w)Adw =1

: | - ‘ )y - | f-,'
where r (W) is the probability densicy of W. The variatlons of W in space
or in ﬁime are dependant on those of the probabllity density function FGN)'

'I‘he £low is statlstwcally stationnary when its otatistical

propert;es do not vary in time.

'rhe time average nay be uqed also for flows statistically
statiamary “The time average in a fi.nite time T 13

'Pi:act’i.c'élly t:he. time T ‘must ba suff;cz,emly 'iarge"'tbmparéd with the time

LI
scale of the tuz:bulence, s0 tha’s: W 2 is es...entially mdependant of t‘he

origitxe L ef averaglng procedure Tmen if F andg are random variables,

| 9%a X o=
' In order to keap freedam to m.ake later, for dz.fferent fie],ds of

applicatioms, l:he cho:Lce of the most convenlent definltions bg means of .

averages of the macroscopic quam:ities, we shall ret&in “for W only the '

pmpert;y that $
ERRAS

The macroscopic quantit:y W is equal to its own mean value,

bm: it i.s not in genmeral equal to the mean value of the quantity W o

4] W W_w®

because the mean value W of the fluctuation is not necessarily null.

According to that property [3] , the macroscopic quantity

" is a constant in respect to the imtegration ir the averaging process, but

o'on/obo



may depend uycn the space and time parameters. We can therefore use the

following relati@n s o
5] [ W F% ;FW

With this relation, we may effect the separation of the ‘macros=

copic terms £rem averaged terms.

| 2.2.= JEAN DALANCE FOR A :s:ma FERABLE QUANTITY IN A TURBULENT FLOW OF =
A COMPRESSIBLE FLUID.= - ' o T

- Let us consider a’t@zbﬂl@nt El@#ngf a -
".comﬁressible £luid, in -a domaine ( lei, 7
“flimited by a surface B, and a scalar S
quantity PY by uait volums of the fluid,Qﬂ
“which is traﬂsported atvthe velocity - 7
of the matter, and which may be randoﬁ.vf"

" The purpose is to deternine the mean .
A ”balance,ef,()Y in a volume ( R ) inside :
S ¢ L), limited by a closed geometrical |

surface’ of reference A.

let T be the unit normal vector of A, with companents éb dcr and d§2
-the elem%nts of the surface A, amdAofichevvolume Q). T
The quantity t3Y'mmy be matter itself or heat , or. eaergy. The
game form of balﬂnce process ray be used. for the vector m@mantum PV and
“is an expression of Euler® 3 theorem. ; but cansidariag each .of the three

components P Vg it leads to three equatioms of balance, (16)

, te shall consider, on one hand the local variation and the
transport of PY by the movement -%3 s and on the other hand the mean
transport by molecular fluctuations, i.e. molecular diffusion, and the

local production or destructian of PY by "scurces®™ or “sinks®,

uco/uo’c



_ _ As F)Y is assum@d to be differentiable in timﬁ, the local rate of
variaz;ion izx time of PY per unit voluma is _O—E (pT) amd 1ts com:rie»{ .
but;om in ( f? ) reads : ’

"jg.at(px)dn

The contribution of transport by the msve:mant V‘3 i.s the flux

through the sutface A

: aml thei:. of molecular diffuamza a@d sources is eapressed by ﬁeaﬂs of 3 10ca1
rat:a in t;i.zm, ;D(p‘;’) gwr uﬂit ‘mlum@ . , )

| \jg (mr)dQ

- Jf“f-t(” dQ j ”V e do - f D pv) T v;

"~ The mean balance of PY mside ( Q ) is obtamed by avex‘agimg

7that expression TR & L

f pY dQ +fp Y vﬁé’ dO' j ( )dQ

: The avemges beim mtegmls - may be pemuted m.th the. other integrals.
] Then with [2] B ‘ - :

B‘f'dg‘“ f"‘f" 2 do ﬁf@a e

The qumtity PYV, VB is not random, and the transfomticn of the

,lo«

-0
N -

surface integral into volume integml may be effected without recourse to

the assumption of diffeventiability in space of PY V(3 » but cmly of P Yvﬁ

according to WEHRLE (9).



The mean balsnce expression becomes s

o7 .o v DY) 0 -0
AEI T

:srliich is va‘iid for any arbitrary volm&é (S ) ixfficieni:l’y larg‘@ with

r@smcﬁ: ta a;he cont inuumn scale it is therefore Valid for the elementary

valumea dQ s -and the 3.0@@1 mﬂem balamce of PY re&ds =  :

) »}3'6.:” PY a scalar such aS haat the. Xﬁ ccmpanent of ‘the quantity
cenducteﬂ across do into ﬁ:he flus_d ;ﬂs:.ée by m@lewlar diifusicm being

i h ﬁ per um.t ti.ma amd per tmit_: gu;:s‘f@f:e the maze"m value m:mss A 18 :

ado- fh P dcr fathQ |

Let F ( p‘f ) be the local rate of pz’oduction or destructicn of

- , DT per. um.t !;ime and per umt volume. by s_curces.’

(Q ) is Lhen ! S - o S

I‘or the elementary volume dQ t;he molecular di,ffusmn and sources give :

:‘Its mean ccmtribut:ion in

In the case of momeutum, for -each component PV 1n the direction B

oo Xy the equivalent terms are the ccmponents in tf\at directicm of ‘the extem‘zl‘

 forces PX and the mean com:ribution per unit volume of moleculat fluc«

tuations of momentum. :

The_vol.ufne e_xtemal fo.jr;:e cdmponem: ,is', in averége °
'fpxadcz - fb?;dn' “and FXgdQ o in dQ

nm@u’nnﬁ-



—ya

The mean momentum conducted across A by molecular Ffluctuations

being P(I in direction XC( s per unit time ‘and surface, the twice averaged
value across A 18 & o :
— Ly
'p 2 do - p { do - | PuB 4@
| ag P 4B B 0 °%p ,
and in d Q : .

_&(_&dn

‘I’hen the rx.ght hand side of [7] reads, for one component of

momentum o

[9] [ »Z)('pv )= F FT _OOP_EC—[% 7'

2.3.= STATISTICAL FQ’UATIQ‘N I’GR BAIANCE OF MASS IN A TURBULFNT FL(}W OF A -
C(}xiPRESSIBLE FLUID o= ' : . T T

- - C- # . . - . -
Let; us decompose Y iﬂto a macrosccvpic quantity T and a.

fluctuation Y ,ﬂ and VB into a macroscopz.c velocity Vﬁ and a fluctuationﬂ

veloci,ty VB ,> such_that -

'["Q] [ R r_*_»Y o 'p= Brso |
vhich implies : . . - - f B
R :

[ 557, 0 avie_ 0ot phl.d [ 6V o). 0% oYY
f C® B o —m % — #

@2 |=pDBT . B o¥. 0% ~_9‘7Q‘>+P?B°T' w2 oYY
' - DL Dt - QXQ o OXB GXﬂ B

o, R AV, 5

+ _D_e_+5 e + O py = O (Y

| L T b g o¥p B) (%)
Using , :
o %

D() -2 v, 20

pt ot = P g

the dervivative following the macroscopic movement Vb



Now, with | PY=P which corresponds to @
% *

the relation [12] gives a statistical equation for balance of mass

bl | 3.2 0% .7%). 50

@(@ is the rate of molecular diffusion and of local creaéidm or

0.

destruge

. tion of mass. The molecular diffusicn effect is nully Lf the fluid is
simple, by definitibn of thé velocity VB of the continuum (2). The rate

of creation or ﬁestmction of mass is mﬂ.l if the fluid is consexrved..

'ﬁms; usually, the tem éD () is null

R The statz.stical equation for- balance of mass [_13] also teads -

%l

4 - S'I‘ATISTICAL EMTIG"\I FOR BALALCE OF A TRANSFI‘RABIE OUANTITY

INA

'TU”BULJNT FLOW_OF_A COMPRFSSEBLE FLU101,WITH MASS BALANCE.

o Usmg the balance of mass [13] to transfom [12] we obtain = 

: ) b— ____ ,—5%'_*0—?“ _§+T_‘V 61"
i | 3t Y, % PTG =P S+ 3 PT (mﬁ P B) axﬁ
N %%_(m ﬂ*”"p’)jf-‘b P)= D ()

which is a stat lst:ical equation for balanca of a ttansferable quantity in

a turbulent Elow of a compressible fluid with statistical mass balance,

and which also reads with ['-14] ®

. _ *
~ k% % —x —F O o -
- bt Dt oXg dXg  OXp B
f16]
- D)2, 2 v pdY .Y D(p
D(PY) = PV~ xg BTt " (°)

% adding the last relation with [19]



R

" In these relatians, the m&croscOpic quantities T" and VB

‘ retain general forms.

3

2.5 = EQUATIG?N FOR BALANCE OF A TRANSFERABLE QUANTITY IN A FLO'»? OF A
CGMPRESSIBLF FLUID, wrm MASS BALANCE = o

If the scale of observation is reduced sufficiently that all
the. details of the continuum motion are retained, the fluctuationsw are °
null by definitiocn (or 1f the £low is. mcnoturbulent, \% = 0). With the
assumpt:.on of differemtlability not only in time. ‘but also in space, the

. ~ game pmcess used in (2. 2 ) (2 3. ) (2 4, ) may be follwed to. obtain the -

desired balance o

V [17] [ -5-9—*'1(9"3) 42 +P__ﬂ_ ;o()

, with tﬁe derivat:we following the mavement VB"

, quantxty in a fltm of a cempv'essible fluid m.t:h mass balance s

It gives the class;c mstamtanecus balance of mass R

oL 513 _d— B }

L R vaéfﬂL e

Xt gives also. the inst&ntamegus baleace of a tremsferable

[9] [at(mr) (PYV ) _p,[%d ;O() . ;D(PY)

B

| thh | ( ) “‘—}2[3" F(PY) - for pY siuch as traassﬂvor;hieaif; -

and with [9] :D(PY ) P X &B_ for. mmnentum cempoaents.

OX
These relations h7] [19] » “inay- be obtai‘ned also usingﬁ:s Elé]
ﬁS] [16 , with t:he assumption of dlfferentiabillty not only in time but

also in space, and simply cancelling ‘the overscores and t.he fluctuations.

Now, let us ccms:.der, more generally, a quantity

g G+9

dependent om, and differentlable in, time L and space XCI . We may develc:op

" the expression 2

Y



. 5 % "-5( ' N
padg_+g;D(P)=pﬁDE(G;g)+po6§[§(@+§)+(@+*§) D(p) -
B& B /o8 2 50 % > (pA¥).,A
=p-5-E +UE(F§) * pVB vOXB +pg_a_x§. + aXB(p g VB) -‘ G D (P)
mg[ﬁmas .2 (o )_;o(p]ﬁ
| oL g QXB_ it
which with the balance of mass [’1 7] wr:.ttea in Lhe form :"‘ -
R ,,,() 59 pa?f eﬁﬁ 13()

o P= +Bax 3%n a
[20]— dL OXB . B B B
- ﬁpmé% ~+a ( ) ;D P) -

- ! g B, oy - % sA %0
 Tedg .qgD) - D06 . D (p§). P 26 p§ B
i |40 20 B Db
el el G D) - )
e e .
-k _ * ®
- In the average, we obtain the expression if G=G -
- pﬁﬂ+gl)(p) =’56§ ’.,.j;P + pae—b_-_\_@_ + p? gé

7 We see that the statistical equation [’I 4] msy be obtained by ;veraﬁéli'ng Ehe"'
 instantaneous equation [20], and that the statxstical equation[’l 6] may be -

obta:.mad using expression [ 21] ,and averaging the 1nstantaueous ‘equation [1 9]

. Therefore these sets of equations s instantaneous and statistical
may be formally deduced from each other. This is explained by the fact that -

. the scales of observation are changed

By substracting [16] from [1 9] . considered at the same scale of
observation, and using [21] one can also obtain the instantaneous balance
of the fluctuations of PY | *
- Tebr, B (et pa‘;) (¢, _pv) (p?_.o?) __V_B_
3 | Dt Dt
o_(P¥Y,- p¥V ) [ (p)- ;0(0)] D(p )

-5 + P’ o which implies P’ 0o

)

.@

with L+ oX
4] °




III.- STATISTICAL EQUATIONS OF MOTION.=

3.1.= STATISTICAL EQUATIONS OF MOTIGN FOR A COMPRASSIBLE TURBULENT FLUID, -iﬂ"

: The fundamental principle of dynamics 1n the fom of Euler s T

theorem ghows that, in the balance of momentum insxde a reference suxface A, the
local variation in time and the flux through A are equal to the: forces[Q]

Usmg for each of the three cornponents of momentum P the =

instantameous equation of balam:e [’l 9] - with
RS Ay oy

we obtam the classic (13) ﬁnstantaneaus equations of mot:ion for a compres-_v,

PC(B being the molacular stress act;!.ng on t.he surface elemant perpeadicular '

XB m the direccionf X a-> ﬂI‘. has the fom“ _‘a second rank tensor. :‘

- 11 ST The statlstical equatiensA of motion may ~be obtaiued by averaging
equaticms [261 . and using the expressi&m [22] with']O] [_11] e

These equaticxns may be obtained also directly by appIiCation

' of the statlstical equatlon of balance [16] with [25]
PR -
‘I‘he statistlcal equatioms of motien for ‘a cempressible turbulent

flu:.d may be wnttem in- the fom Cer e e -

g<

P we B T

1 pb% , B oF, %*-5\7 G R T S

N o e SEFY -
- p"d"‘axﬁ (pag“p\&vp) B

a sét‘l of three equations for ® = 1, 2,3 respectively,

“,l .

3.2.= STATISTICAL EQUATIONS OF MOTION FOR A NEUTONIAN GAS.-. ‘

, In the case of a newtomian fluid we shall retain the classic
aséumpti@f*&s (13) of : differentiability in space, as in time, linear
relations between the stress components 'Pa 8 and the rate of strain A

compmants Ng B

[28] g = 2, A o
ap X AXgx : -,




@tmw @f the fluld. And, for a gaS, the Stokes' Telation &

between Lhe two coefficwnts o.£ viscasity u

The relation [29] . stricr_ly valid for momatemic pases, 18

7'5!@3“‘1*34 to b? practically Valid forg' vsual. gases (13

Theu we s‘nall use for_gases the relat Lon (13) '0_6)5 [29]

[3()] [Paar;(p AO‘E) as*””aﬁ (P+-—tl°v"ﬁ) ‘g "ag

where 5(1 is the Krenecker symetrical unit mnsom.

The pressure with relal:ion [29} i.s md@neuﬁem of i:he rate “
: of stmim aml is defined hy the m@aa value of the normal stresses :

: ".=—‘,—-an O o
The viscosi.ty p. 18 found to be mdepen&ent of densit.y, but -

L dep@méem ?m t@mpemtum, Sl

structure at high rates of strains ‘that [30] has been feund to be inade~ =
quate“. For _simple gases ;- it corresponds to the second approximation of
kinetic- theory. The third approximation shous t:hat 1t is. (13) adequate

'~ for most purposes in fluid dynamics except 1n the imxediate vicim.ty of

a shock wave

‘ In our consideratxom of turbulence wve shall retain also the
usual assumption that fluids show newtonian behavior (7) and that the
relatlon [30] is valid. Viscous friction limits the rate- of strain in
such a way. - that the linear relations between the stresses and the races“:_‘“

of strain contxnue to be applicable in turbulent flows.

In tha case of mcompressible fluids, the xelation [30] may

be used with zero dilatation, Vg 0 .

For the relatitm [29][30]experiments show that (13) "the ‘range -
of valid'i ty is very wide, for ic is enly with fluids of cemplex molecular-



= i3 =

Then, the term corresponding t:o']JaB in the equation of motion (13) is :

| Map o (.2
-[31] 3X Q. =_©Xa(P, f” B)

b2
OXB GXB X
- Therefore with E26] s we have the conventlonal form of the

Navier Stokes equatlons of motlon fot a gas (13) :

I dve o o2V LdVgy
o pd_ta A ‘?D() o " ¥Xat ,uax axg a <ax )
[32] | ° v o BO6 A
R P (ava 6 _2_ °'p
axﬁ ax@ axa o3 Xa axﬁ )

and wlth [2714me obtain a statxstxcal form ofvthe equatious of motlon

' ,for a newtonian gas e

,_ B Y e __ _!e

“ | ﬂDf‘t DT T Bamg T

_ —v ) a X‘% ; 7—7 %—. . ,7. - | 7‘ -
SRS = w'+-"<3')(£3 ’pVC(vﬁ*\a:D(p): B )

o ‘[33]11"”“;'AW :Mt:'"_f = 2~ ja' w
: X »GXBOXQ‘{ 30
op (O gy 2 op °p

| g ' TV g -

7";f7<81nce the coefficient of viscosity 1L ~ depends -on- temparature, it 13 o
- necessary in any complete formulatxon of fhe equations of motion to allow
 for its variatiams, as has been done above. But in addition we have to T

censider that the temperature may be turbulent, nd therefora that in

the general case the viscosity may also be turbulent,

. We may separate }L in 8 macrascopic part h1 and a fluctuation
u such that 4

[34] VY

—
L]
+
=



;/"5‘,,;{37] [ e 8+e

'ﬁThen for limlted fluctuatlons 9

The right hand sides of equations [33]

- 16 -

of motfﬁﬂwﬂﬁen':eads>:

D) =% - Tt Tl 0o %y
. - X axp dXg 3 axa axp '
By .2 (3, 2y 2 oM O% A
o GXQ oX@ bXa> 3 OXq bXB 7 OXBbXﬂ
;ﬁ > (), u(éVa 5@)-_2_9_& off op
3. X QXB OXB GXE aXa 3 ®Xﬁ

In the casa of air, under normal conditions, for lﬂ tance;”the variation

‘>~,°£ tL thn pressure is only 4

appuoximakely as- the 0,68 pawer

' tem eratures between 0° and 2000“ F (15) The variatlonq ofjl are of magnitude
P

',bulent temperature fluctuations
<turbulent fluctuations p

'm-viscosity'and temperature of - a gas is a non-random function

p and 9
[36]

%«: a

" - nearly constant,varyiug only sllghtly with e

Let us also separate

”'of the viscosity s are limited

B8 [

- Such assumpuion seems

#
'p.-ae

of u -

fxperlmental 1nvestigation shcws tnat tne rexaclcnsnlp bELWeé1 ,

L in ‘magaitude for a Variatxcn’of pressure .

. of 25 Lg/cmz (14) end is usualiy negligible ‘The vis rosity [L varles

nf the absolute tempera;u;e K-} ;”for“r,l'

o 100 Z for a variation of temperature of 400°‘centlgredes, aﬂd if the tur-‘ -

are more than 4? centigrades the

are more thaﬁi

' even if l

'rare Landem, and the dexlvative o S ?,'r T 5

-is also a non-randem function,

-in usual cases. ‘
into a macroscopic

the temperature 79

of Lhe temperature e! ’ the fluctuationsil

alsc, avd we- may assume that 2

to be Valid for instance in the case

of air for fluctuations e of temperature of magnitude plus or minus a

hundred degxees, and "a" is near

ly constant, its dependence on © being

very small for differences of hundreds of degrees.f.'

.; cesfinas

e e e

O



vThe follewxng additioual term

»veloc1ty whoseﬁ.XY

wlth thls assumption the right hand sides of the statistical

b a {
aXB ()XB éXC(

VT‘V belng usually negligible. i‘iJf” W”

S, avﬁ)l 2733 (5
5

.equat10n3 of motion for a newtonian gas [34] reads }
- 7y — 2. P& 0 AVa :
px P LH % M0 (0B
Dlew) -P%, % axgaxB*s OXQ(E)XB)
o | oM aVa By 20M 3%
st §5 9%y
+ale 7 a_ +?'6X (5 ﬁ)
. 0Xpd¥g oha B
EEmaaEm
- OXg axB axa 0 oxﬁ, :
Bmd) -~ -

332 STATISTICAL EQUATIGNS OF. MOTION I‘OR A FLUID RE,LATIVE O A CDNSTANT
- Romum COORDINATE SYSTEM.= - -

If the coordinate system is rotating w1th -a consﬁant angular -

componen; is (QY s

Y balng here the' vunning index |

1, 2; 3, the Coriolis force a&sociated is equal to minus twice the vector o

preduct of the angular velecity aﬂd the relative velocity its Cﬁmponents
- A,;'are an (r hos) 1 .

" in directions o .

7 Ca{37 being the antisymmetrical unit tensor.

Then the components of Coriolis force are (r.h;s.)::

C,= 251BYuYPVﬁ=_

2(u2 PV ?'bg'p¥2)

Cpm 2eagy O Plp=-2(0s Y- 01 P%)
C, = ZCSBY Y Psz_z(co,'. v _ w, PY1)



= 18 =

The mean value of Coriolis force is 3

——

[41] Ca= 2 gy Oy(? VB pi’iﬁ)“

Thus, in general there is a contribution of the effects of turbulence ts

the mean Co:iolia force.

Let ,] be the.ccmponent of the centrlfugal acceleration due':
- to the rotatlon of the coordlnate system. This must be»addbd also, it is
nen-random, and the mean value of the correspondlng force compﬁnemt is :

fluxd relativa to” a coordinate system in constant rotatlon can. be written

(27 [41] [42]

PR 'm-

‘_Iﬁ”the casé dfﬂﬁoVemeni réiative»td a'plépet,~f§?,exémplefthe
fﬁarth"it’ié ﬁShaI’to cembinerthé'ééhtrifugal foféér P\kx and the
newtenian attraction by the planet into the gravity forcepg(I p%q;’ 5'
are. the other external forces componeénts. The rxght hand side of :
.equation L43] " of motion for a ccmpressible turbulent fluid relative _;  o
"to a planet may then be written : ' MR
\"7"3 \’f) e

[« 4] ,D(Pv ) - éPaB WPy s2c ) +

o (7
g apy Y
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T diffusion correspoadmg to s -

~~ 1V.- STATISTICAL EQUATIONS.

OF ENERGY FOR A GAS.~

é.l.QVSTATISTICAL EQUATIO& FGR lNTERNAL AND KINETIC ENERGY FOR A GAS.-

Let: us consider the tm;al intemal and kinetic emergy of a
gas, per uni.t mass : - ’ '

3 €+ V(I\él o Ny

We shall make the usual. assumpt:mn that the mtemal energy

per unit mass, e ., is independpnt of. the movement and depends only on

~ the state of the gas Also, we shall llmit our consideration to the C -

case of ‘a gas for which wass is conserved so that -

o ~ “The fundmantal prim:iple of ccnservaticn of energy may be -

p\( pe +__ pv V T » the cozatnbution of sources and of molecu].ar

- the mte at which work is being dane an the fluid by external

,forcespxa ST

fpxa\}’dfz.f- o "fffl_

. the mse at which work is bemg dcme on the fluid by the

surface molecular screuses Pan 6 -

Sl ﬁ% e f’“‘ P‘Iﬁ win

the rate » at which heat is being conducted across the
surface A mto the £1luid by molecular diffusion '

0 do - [ 2N dq
\j{]k3 p’f ~Jo axB

“and the rate ;D(Q) at which heat is radiated or absorbed by

the fluid s _ ,
j;D(q)‘dQ
JQ -

The transformstions of the surface iﬁztegrals into volume integrals are made

sosfona




o "‘&nd e » the fluctua&:ion

=20 -

with Che assumpi:iam of differentiability in space of 'p Vv _ and h
| , ag. a B

Since the balance is valid for elementary volume dQ » We may ué‘e

equation [19} and write 3

chy) + D(g) ’

This is the“iz}stéutgneous éqzjatiq@ F’if internal and ki.net:ic’iepel:gy’fm: a gas.

E T : ’ »
Let us. separate e im:u E 5 the macroscopic internal emexgy, -

';,_‘[47] . {e_.:E S B w BB

o T om= . * O
- (A, E VA VAR VAL e Bk N e §
- ["* 8] | “z-va =3 Yo W T f
. ,Uaj_ng [4 6] " and the expression [22] with - g e +__; Ve \& ot using S

_the- statist:ical equatiozx of balance [16] ; directly thh for instance -

R S S I S
Fotahh

4 ‘ }Yt.f,: +v +_H~x ;vk

C(C(

ke we - abtaln S a- statistical equation of balance for the 1uterna1 and kinetic

V--_energy of a gas.:. . R o o
7 P — ’*?ﬂ x % R TR ]
p,,_[lJ_JL__(ﬁ V) +_%3t(pe+\&pva+% PEY)
e ; - .\,‘ ) : ‘- rrrrr cT * ‘.
TE) (B BENATE AF o ¥ ¥ ) oV
o 2 (V) (PTG AY Pl VC(),"aYQ"
[50] 8 . . P
—_ = —
=P cc<1+pxavcc*§xp( ag\é *Papﬁcﬁ hﬁ
¥* XA * #
I _P?VB_\&PVC(‘VB_ > p\&\& Vg) + b(q) -

With the direct averaging process, this equation is obtained without recourse
to the assumption of differentiability in space of paﬁ (1 and hB but
only of paﬁ and of hp (2.2.). | R




4.2.- INSTANIANEOU& EQUATIOWS OF IVTEKNAL ENERGY , ENTHALPY ENTROPY AND
STATh FOR A GAS. - ' : .

Let us recall briexly the classxc i.natantaneous equatious of
energy and state for a gas (1. s).

ﬁ-g-h The terms of the three instanténéous e‘qixations of |
motion [26] ~ are mult:.plied by VC( . With sumation we have t.he kinetic,

energy equation

e ) [ apd(y v). Px Lo+ Ve Gf& ,
[*]' «_‘ZHT(“CL), “aB 7
o o R 5ubstract1ng this £mm- the equation of total mtemal emd

 ', kinetie energy [46] , wa have the instantaneous mtemal enetgy equation E

[ ede v' ah
- ’ - _ 1521 [T pC(B OXB @XB :D(q)

~4.2.2, ¢ “To e:-mress the. dxssxpat;ion of kinetic energy as heat,

- G o D,

one”\fses the £irst law of thermodynamtcs s ma‘cing the assumpt:ion that (13) -
- whenever small changes of state occur,be the gas at rest or. in mot:ion, S
" the energy dq per unit mass ‘that has to be supplied as heat to provide

] f»bvg_;theséfcﬁanggs is given by
S [53]ﬁ [ »dq - de,+]3”d(i)

The rate per \mit. vclume (13) at. uhich heat must be absorbed by the fluid
m,ay be: written : ’ ) |

40
dray__ P dp __al@_ w
Mo P e qr Ty el
Then with [53] V _ ' 5 bh ‘
' dqQ _ AV B .2, D )
-a-(3—~pap ‘axﬁ E)Xﬁ E)XB q)

veidous



- &a

This shows that in sddition to heat gained by conductlon and radiation,v

an amount measured by 13, p- 54 )

| 5 OV y og
[ f?], ) 7‘9 Pap axB Pa%

per unit VOium@ and fime is generatedrin:the_element at.thgzg%phnse of
othet formsfof energy, ) is the R&yleigh's'aissipation fﬂﬁction;' B

The imstantaneous equatiom of internal energy for a gas,

Ta

ﬂw1th dlSSlpatiOD is 3

| [55] ['Pd"_e s~ pB s B D(‘q)' A T T
bl TR B LT e
éﬁé 3. In Eﬁe case. of a newton;&n éas, we shaIluse the R

o o > o o>

amd Fourier s linear relatian betweeﬂ heat;', Lo

flux aud temperature gradient

[56] [ ~h _k_ée' e ST N
-k isvthe ﬁhermal”conductivizyg whiéh i$ deéen&eg§4§n iémperature.reiFgurhen »
g Ng 5 . ovg OV vy
BB 2y N 0% Ly OV
(35Xﬂ aXB'Z" aXa OXB ‘ BAéxﬁ"",
, i ‘ OV '
= naﬁ_gix__ .§_ _av__.. __Q
but

n = — ; @
aB 5% = 3 C‘B(ax oxa) n“ﬁ “B
B B
and thus HE ' : ' ,
. o ' W - OV

(57 [ =1 g g Mo - 2 Vg - O'8

fhe equation of internal emexgy for a newconian gas reads

oy oy N\

5 8 [ p de _ B, kae D

0




~4.2.4. This equatiom may also be expressed in’ alternative

o o es < @ B

forms, using either emthalpy | or entropy § per unic mass, where
[59) [ i - e+_l

[60] [_-? eds_de +p d( )
assummg that: fcr a gas i.n mot.lon, the téa'nperature cmtmues to possess

the property that '(19— -is am integrating fm:tcr for the 1ast expressiom.'

~ Then [17]_ . : ’," s e L e

C edi_pde.d Ldff; de. £ 3;9

| W_ H_ d]t?, P:dL - dL Ad‘, Pé ;3 R
R _d__ LjE _{3_;_3_ S -
R TR T Pa T
o VTherefote, _:(  13 - p 55 ) the en@rgy equation in tem of enthalpy 13 ﬁ‘fv' '
e [edi ia 6“6 E: * s

Sl | edioe . 2B - (q)

| In terms of. eﬁtropy it is 3

b4 | pedz ‘9 g (q)

In the case of a non turbulen" neutaﬁiu:u gas, that sat:isﬁ:,es [56] , ,and '

without any mdiation efféct dwidmg by G and integmting thtmughe’uf
the interior of a closed surface C moving with the fluid, dC being the g

‘element of. surface, and 43 of the enclosed volume -G » one see that

fpdsdz f‘Pd3+f kae)dz
R 96)(3 6XB

Simce the quantity of wass contained im the volume & is ccmserved in

accordance with [17] we have :

_dﬁ_fpsdz f‘szf

0‘./;.0




o

and ﬁ:ra;;xsforming the second integral om the r.h.s. into a surface - %
integral over C ¢ '
. ¢
d [ psdz -
: dt L i
- k3 : z
Ix the £luid 15 cempletely enclosed u‘mida_ hem insulating

_ boundam_es, with- whz.ch C conmuies, the surface z.ntegral is then zero;

;Vrepresem.ing the absence QE flux of ‘heat throu'?h that surface.

Since t:he dissipatlon

\P _is never. neﬂatxve, (if l’L
3 A + 2 P = 0), the volume integrals are mwer nagative Af k
”L‘hus the ‘entropy of th" entire flua.d must not decremse, which is 1n '

acc@rd m.th the assertions of the second 1aw cf thermodymwmcs (13, p.56) . |

N 42 5. The definitions of the specific heats, CV at ;onstam':f’;it,,

"volume and CP at constant tempérauure, being’“;

:rﬁwlr;i. - du= deﬂiga-ff~;q,'v<; B
“for a perfect gas, CV ) and Cr are bot:h functions of the tempéi’ature
Vonly The equations of energy [55]» [61} - in terms” of tempg;mt;ure,—-

- then read 5

IR R
do
t

And in the usual cases where Fourier's relation [561 18 valid (13, p.57):

i | d o a5 3 10 L D( ?
1 [Podevorgt 3 (5e) - 20

8 de_ L L D)

] [ L TaRT axﬁ( oxB) ;D(q)

P being given by [57] for a newtonian gas. S .
, - , o . o , I A
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e l; 3 - STATISTICAL LQUATI.O“% FQR INTEPNAL ENL‘.RGI OF A GAS.

4.2, 6 The themal ,equaticm of state, which gives a relation between

o o 2 B9 WY

p.) P and 6 is, in the case of perfect gas in- ‘mean motion or at rest :

6] [ P RPe
where . ﬂ=:—5— I' " Ris an absolute constant and m is the moleculag
weigh 'fof the ‘gas ; and : : : B

{ R. c-P Cv

For usual gases one m&kes t‘ne assumpticn that these relat:ions -

Ware valid ’l‘he daparture ftom a perfect gas is negliglble (13) for
E 1the air, with Y = __C_E_— 1, 4

CV 7' : . ) - T - - - ,- - - -

] Using t:he mstantaneous equai::mn [55] [4 7] [22] and .avaragxug,i :
,we obtain a statistu:al equatum for intmnal energy oﬁ a gas : L
o % O BN
| pBE,Ber.eEdb T
A Dt DL g @Aaxﬁg HE
e | DT e
1235 3. %) d ““_p-aéﬁ\%,"ﬁ - )
P anB 3% g axB( S Q)* D(q)

i ._with the meaxidissipation‘j

5t I
' ® oV c)V@,
72 — - C[ + '
2] E"hﬁﬁx P 5%
°B r Y
OV Y

L ? _P&QEXB PbXﬁ
In the case of a common gas, the relationms [56] and [30] [57]
may be used for hB and s

ohgq T e
8 o))
[73] aXB OXB (ké)(ﬁ)
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STATISTICAL EQUATION OF STALL TUh A ”ERPFCT GAS =

PP
- S

The thprmal equaticn of state [69] is

7 | p-me(e +e)
T_h‘e s{tatlstlcal equation of state for a parfect gas reads

[78] ']'J': ”(99 Pe) e s

4. 5 - STATISTICAL EQUAT 0“ OF ENTHALPY r’ox{ A GAS -

The enthalpy l per unit mass mag be decomposed i.nto a

macroscopic enthalpy I and a fluctuatiom 1 such that

[79] [:t-In with [ea] *1-_55

Using the instantaneous equation [61] and [22] e have a statlstical

quaticm of em:halpy for a gas s

o:-o/'o-;



pbI, Dot ’ff\_fé+ ¥oal
| Dt ~ DU axﬁ B o¥g
e #__ - crarali S
A = —+Q__ +v 0 : _a__ |v 3 D
| P Dg 8. g ' B¥ B( g - g)+ q)

r»f,ass.a SLAIISTICAL EQUATION OF HEAT TRANSFER FOR A GAs.

'I.'he heat couductiv:.t:y k N and the sPecific heats Cv or. CP

o - _' of a cmnmon gas, w’nich are dependent on temperature s may be separated

x A #
- “into macrosc0p1c termsffK‘ and (SV"or (:P s and tﬁfbulent fluctuations k

- ) and cV or CP » respectxvely such that "}:,f_rir fﬂ"i o
-.,.,;.[§2]¢"<‘ k=K+t» N fC,V,,?“:W B e A e

Variaéion§ of the Prandlt number, ’ID’-— 1y _;P f', and of ﬁhe/SPQCLfic ,
R heats with temperature are- {15) of a icwer order of magnltude than those
- _of the viscosity and thermal conductivity, Then, as far as fluctuatxonstl
and k are ‘concerned, we may fetain the assumptlons of constant Prandlt
- number and Sp¢C1fiC heat and the thermal conductivity must vary with

temperature 1n the same ‘way as the viscosity

-F*:—cc

An assumptlon analogous to that made for}l E38] can therefore be made - -
1

*
for k , for 1im1ted fluctuations of ©
_ . . , o o ‘,_
@4'{ k=be with »b=g_




- - have terms of . the form : ', CEEA

=

7 ,,,-,,,,.,M--?“\‘ ‘ A ’ . .

If the fluctuations of spea;ific heats are negligible, with
[65]1:56] [_22] and averaging, we have

R S *
([506 . Ap%. 8 % ST b o 783 :
v "ot o’ \ P3xg "oxq P
B “'P
[BSI n o —— - .

— -' o _
W , %
[ o [pDB. B o8, 08 % o 06, .
L T S B3Xp " BX Bl=
. [86] ' B . - : a_h__B - B
= $+EE + Vg °p s B+ D(q) i

If the fluctuatmns CV CP are notﬁnegliglble, an assumptlon
hke [38_] can be made again, but 1n addlt:.on for limited fluctuations of .

temperature e wve may assume- that the derivatives T

) are constant in’ usual cases. Then : - ’ . e o -
i | * ,' . 7* o . - - —
[88] [ Sy=Cvroye G CP*“P

| In the general case- the equations of heat transfer [65] [66]

pe, 40 B pdo , g pdde _& pde g LPd_gz PS_«@_ e
Usmg[Z'i_] with g-e é:g) ,é:gv i |
06 5 (0% ¥ o0 . paovB . 0 (pkt

‘ pgi'=p8?+DDt(pe)+pobXB+ axBV axB( B)
Using[Q'\] with 3 g=32 6,_%- a:gz
8 _ D (p%), p529Y8 , 0 (pk¥
"It - P¥) + w% +axﬁ( ﬁ)

~ Now



With [65] [66] o and averaglng, ve obtain statistical eauations
of heat tramsfer for a turbulemt compress:.ble gas T ‘

[ _ %2 n av T
DO 20 P8 B, v
¢ [pﬁ‘ ‘DDrpe" Baxg * oxﬁ p?ﬁ]
B P S '-,sw e %]
T89] 1 D p82 108 tﬁ‘l_a__Pev P50 ,p8Y 20 |
TR oo LB D)
& )r20. 08T 00 8% Lo sET)
P[ “Dtﬁ”-i*‘D_tl +ﬁ bXﬁ+  ', OXQ +éXﬁ,,'_- g -
[90) - +<’:’*1_pr§2+19§?~% A0 p8&Y .p6 _Qéwg% 20 | _
“PlZDt 7 axg zexg B Dt gl
7. 05,52 % o -
"";\?:*TF?* B-‘éi’f}* axg * (q)

———

9P is given by [72] for a newtonian gas by [74] - and with the -
‘ assumption [3 8] by [76] Also for a coamen gas hB is given by [56]
i aud thh the assumpcian [84 -

A {91] | [

h _ [Ka{a b (10F +§3§;)J
GXB 6XB 6Xp 2BY§ C XB

C 4.7, _STATISTICAL EQUATION OF KINETIC ENLPGY roa THE MACROSCOPIC MOVEMENT
 OF A FLUID.- " '

If the terms of the three statistical equations of motion for -
a compressible turbulent fluid [2 7] are multip].ied by V s with
summation, we have with (45] - 3

¥ | -——‘ T - 6{7'
X % %m0 ;T
TR D QLY B
b t( )-\GDLPVQNC‘ vBaxB LA T
—g L T TR W AV
= PX V4 v PV ) (P Py &
“3xp «(Fag Pl g )] (g C(ﬂ)axB



, 1'he equation of kim.tic energy for the n,acroscopic mcvement of a fluid

may be wntten W,‘M Uzs]

f’_%aﬁ 5 %—:,.r — %, % O
D o1 0 ~ B
|z p_DDE(\GV&)*VC( 'ETP.VQ‘ 7 P axﬁ(\@/&) %‘, ' o*g
[92] o ) .,*% : %g_ﬁadafﬁaﬁ -
‘-',—"PXC(V(-If Xﬁ [V(-I(‘? ~PV Vp)] fpvavﬁ‘g‘—’xﬁ - —Ya——axa R j

an B _ .
0} [72]13 the part of \P , correspcndmg to the mean d:.ssipation as

heat caused by molecular friction m the macmsaoplc motion V(I
T In the case of a newtonisn gas, P is given by [74]
wi.th [30] S '

MACE wr )+ %(v m B)

4, 8 - STA’LISTICAL FQUATIOEY OF“I‘\IT‘"RNAL AND TURBULLNT KI“JETIC ENERGY

FOR-A GAS.~
| : Substractmg the terms of [92] frmn those of Lhe statistical
quation [50] of internmal -and ki-ietic enevgy, we obtain a statlstical

»

equation for. intemal aﬂd turbulent kinetic energy for a gas :

5 S*é::é‘(ps AR "5%;‘%‘6?’*
DL DL T wa/ T py }@axp
' % * % Vo -, # T PR
[94] .+(Pe . %"Va\&) .__X_% = PX % +£(E(paﬁva th _Pevﬁ_ﬂipvavayﬁ)
) % _oV, =
vy S _p_B
s By * Py (q)

'o‘olnc‘
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4 9 - STATISTICAL EQUATION 01’ 'I.‘URBULFNT KINETIC ENFRGY FOR A GAS -

‘Substracting now the terms of the statistical equatmn [7’1] of
iu_térnal energy, from those of. equation [9 4] » _we‘ _obtam a statxstica;

equation of turbulent kinetic .e:neftg'y' :rfor a gas @ L

) - ‘ R f: with. . = - T s ‘ -

] ST whioh is the part of ) [72] ) : correspcrnding to the mean dissipation
g ' - as heat causad by molecular friction in the fluctuatxoas Vﬁ o of the )

'EVelocities = R T e .

= - = i . - - -5 - - - ’
e In the case of a newtonian gas, P is given by [74] S
~in the case. when assumption [38] is Vahd by[76] ‘

e ' . Lo . L ’ S w

4,105 = INSTANTANEOUS AND STATISTICAL EQUATIONS OF TOTAL ENTHALPY, AND OF

A total emthalpy lT pm' unit mass of the gas. may ‘be defined by

[97] { : _a+; va\&=e+1; Va"a

Let us separate the pressure P from the molecular stress

conmponents

o8] [ Pap=-Poap+ fog



=32 -

%@{3 beiﬁgjtha molecular frictioxi'stress 'components,tensgif;? ‘

The 1nstantaneous equazxon E4Eﬂ of intexnal a@@ékiﬂé@iéienerg‘.

may be written '

[99,] pr(e“‘" a a) pxava.fm (pva) 5—)(6 (FaBY(I hg) 13(q )
' Also, uit:h [17] - .

| oy i de |
'[1001 axa(p a) Poi i = A g

bl s

- o that

ol SR

"Equaticn PQQ] becemes thus the instantaneous equation of total enthalpy ’

,[103] [ le _pxav ( ag' a*h )+—a£+ @(q) ‘

L 16, - 337):@'“

I now we’ consmder ‘the macroscopic total enthalPY I andA,tshe ;

T %
..j,,fluctuations l of total enthalpy s
l

[104] { ' S such that _IT=?T

We obtain; with '[22] [104] ‘and avéraging,‘ a statistical equation of total

enthalpy for a gas :

-_acax
p DIy,

| [ros].

©

e

" .
X(IV(;( +pXC(Va+_6_aRE( ag'a ’ apva+hp
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- and a  fluctuation OT of total temperature :

s sy
B4

For a common gas hﬁ is given by [56] and, with the newtonian relatiom, -

[ ] L C(‘ 3 p éXY B p'nC(B

Also,. by addition of the terms of the statistical equaticn [81]

enthalp}' and [9 2] of kizxetic energy of the macroscoplc movement we have E

) — % s oww . ¥ Tx -*'%:‘W_ﬁe‘“ 3 x O w
pD_Dt,(I +12_.V&’\&) ‘*‘I—S)—t;pl +V(;_DT‘,QVQ -1-pVB 'Q_XE(I+:I§'V(;(\<I)

- 1 +77F 2% 5= \voV, —& o [ /= — — TEw |-

Xp ~ 2% axp| wHApT i
% x OV, W O % O 7 %
. PVy.V Q. P v P :
B Tra X R Ta g ) i

The equation of total euthalpy[‘103_] may be also considered in )

_,terms of total temperature GT defined by - 7;, e .
énd‘tﬁén readé;;h . e | o e -
BT P e ‘,I{' .
[109] P'gﬁ adjf-»pxa(l(+’a_})( +e aB‘(FdQVC(*hg)"" ‘D(q) :

Let us separate eT into a macroscopic total tewperature T

: S ] W R
[110] eTgéﬁgf‘ ~ such that V®T=®T S

S 51 , : - - %
Averaging [1409_] and with [2 2] in the case when the fluctuations C

_are negligible, we obtain a statistical equation of total temperature fof-

a gas §



[111]

If the effecr.s of fluctuations of specific heat are rmi: negligible, the —_

equatlon [105] in terms of total enthalpy, will be used

hs ll - THE kImETIC ENFRQY RALAEIVE TO A LOLSTANT G;ATEQQ CQORDIRATE SYSTEH.

‘ In the case of motion relative t:o a coordinate system in
constant rotatlcm w\r > the axi.s or w‘xich is fixed, ve. have to considet

the rate of vork made by t:he Cor;olis force, [4 1] w‘hich reads

I B P V V "77 S ,,7‘7 ”i”"f C -
[ am gl = O

Thls x:em is null because the Cormlls £orce is orthogonal t:o the relat:.ve
velccxty, and therefore its work in that movement 48 null.: We must also

consider the mean rate of work ‘made by the centmfugal force due to the

‘rotation 5ﬁ*;' S 1 . 1 ,'jMfff . A"" -eri el , o S

___‘.

vhich, in the case of a movement relative to a planet, is- comb:.ned with

‘the newtoman attraccion into the gravity._ 'I.‘he rate of work of- gravity is-

9PVq = 8y (P +P%; ) AL SRS

- The terms relat:.ve to the rate of work in the macroscOplc motion |

~has to be added into the equations [92] [50] [105] B07] El 1 1_]
[ ) _ J PV or g PV vand XCL replacing XC(

The. tems relative to the other part of the rate of work, i.e.

in the fluctuations of velocxties has to be added into the equati.ons[Q 5] 94]
r501r105][111]

&

o O gapva and XC( replacing XC(
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e V.- STATISTICAL EQUATIONS OF A COMPRESSIBLE GAS

BY METHOD “A" - - .-

P T —

Dale= LAuROSCOPIC QUﬂNTlTIES BY JFTHOD "A"

r0110w1ﬂg, for a caﬂpressible gas, the procudure used
for an incompreSSLble gas,different authors (5) {6) (7) have used the

defznitioﬂs of the macroscopic quantities such that tney are each equal

‘to the mean value of the quamtity involved ST “i', .j";, 
- : L 7:* '.—_' _ -7 ,,.7 ”71—.‘ " - *'1 -
[112] A W :;> W o IR

7 We shall except T

: p_P4+p _—_:>b_"= 0 o

p1s) PaTep = 70 ‘
B 20 _c*>£_> |
Dt B aXB

5.2, THE STAEISTICAL EQUATIONS OF A GAS BY MEIHOD "A" -

" With these definikions[113] [114] and the preceding general
-gquations, we obtain the statistical equations for a compressxble turbulent
gas by method VA",

;f;/°'ﬂ



 due to turbu.lence.

- an equlvalent equa?;ion is given by I{IN”E ( 7, p. 25 )

= 36 =

5&2&1& 'l?‘he statistlcal equation [_43] or [1 4] for balance of mass |

reads in the well«lmmm equivalent forms ( 6, p- 82 )

o

2P , 2 (PV- D vp"é. .
ot *axﬁ (% +7775) = Do)
09,52, —“‘“p Do)
in which there are three terms P Vﬁ corcespond:.ng to the mean ‘Mmass -

s

flux due to- turbulent effects, and related o cmrclae‘ion between density

~-and velocity. Sl e ' -

5.2.2. The .:tatistical equatwn [’1 6] for bslance of a transferable o

> > B

i quantmty pY S m.th mass balance, reads O ;?; S ST -

e : - . -

A A
SR Dl”+ -? P"v" p?ﬂ@. of vg r;o()=
6] DL % XB o

'whem again thore axe. three terms at least included in the mean mass flux :

-<i>l‘ 3

I'l the case of an inccmpressible fluid Cand when >'

"'§:Z:§‘i ' 'fh‘e‘st»ata,sthal" eqqations_ [2 7]rof mot:.on fo.r é ,f‘lu‘idx ."re”abdr 3 -
| 7Dk ,_D_ VL Py e"’a p" " _Vﬁ_
Dt C( B XB aXp

m7 -

p
Using these equations with Xg =0 , 3)(9):0 and the equation [’115]
of mass, one finds the equations given by SCHUBAUER and TCHEN ( 6, p. 82 ).

Each of the three equations have five terms including the mean turbulent

gl I [ o = ' |
pr v +V JD() PXOHOOB (fap)__P_- '(p‘(x)'

mass £lux.

TR, S S




. ‘\'

£ For a newtonian gas, with the assumption [3 8] which i.n ‘the
present casa may be interpreted as J.mplying :‘ S ;
4 s .
o 18] [ L-f+ae”
the relatioa [39] gives iR
) | D(ey ) pxa 3, o B2 (%)
1. 7% éxa ach‘)xB 3 éya axB
S R —"a—@ e o 6v"
. [149:' é éV(I __@_>__2_ Ol ‘ I/ e VC( i 9 6 B)
- + a ( c>\l(1 . "é ‘ .i Sor % | d ,i_ :'“1-'-"
3%p \3¥p éxa T 3 O o
- T - ," , r—— S L -
- - - B “’»,aav 9 (a GVE ) —_2—‘ aa 49'»“ 6\"3‘ e
L bxﬁ oxB oxa |3 OXa OXgo
o ate usually negligiblm i - R
‘ The stai.z.sucal equat:.ons [43] of mot:ion for a fluid relative 7'
to a constm:t rotation coordinate oyotem read e ’
e e T av_ SR
P D (0§ +._D_ ‘YV& +P"V"» 0 x - +“p” & M i
T R 0 AR ] A ’ 5)(13 T Xg
- d_ Py _ PX fag 9P
) M[:]2O] +6XB Py +Vy L p)_ _C(' + éXp g
. - P Jafzea YQY(pVﬁ’“p vB
L ‘ » :
In the case of motion relative to a planet the right hand side
v reads : 3 : -
. ) , o a?— X _— . . 6— N
a Pv
1] P Ao+ 3% Q“'pga’f“am("Y( B*pvﬁ)" P



= 53

One term fin’ each equation includes ~P"V7 '. ' ,' in the COrislis forc’e‘”‘f

‘The stai:istical equation [92] of kinetic energy for the

macro.,copic moiion reads :

' ﬁ22] ‘ 5 a

;with : _ ,‘

‘[123] ;

and fm;[ a " _
24

) | A G T T R o

Using these expressions, with- xc(-O a ,: and the equation of mass [’115] s
one finds the equations given by SCHUBAUER and TCHEN (6, P 83)

[126]




A A Ve i
Cp (PD8, D p"e",pe" _L. 4P

[127]

~ When the specific heat CP is constamt and the heat conductivity and
R v1scosity are varlable but non«-turbulent aml “using the _equations [’12 7]
o [11 5] [56]‘ , one £indsthe equ ation given by bCHUBAUER and 'rcm:.u (6, p' 85)

- Ii‘ the fluctuatmns of C\l an¢ CP are- notfnegllgz_ble.,_ with :

) ;the assumpt:.on [88] s we have = : =

P—»C-P-e-U-P 7 bgcause o 9 '.Q

In ‘that -more general case, the. equations [89] [90] of heaL .

: rtransfet for a turbulent campx’essxble gas have t.he forms

,_ V Dt Dt 3% dXg. anf
. A e e - A_
29l |- +oy (1D pe?,apen M ,1 2 pe2yr P”e” 29_7 ,
N A A % . BT Dt

L Xp OXg dXg - dXg
[ A_ A L . a.._. F
cp(P L8, D _Pompvy 98 , 0%’ B, pa'v)
AN Dt B 3% oXg oXg B
[1~30]' | + op (2 ﬁ-peliz +1 pe"é oV -;.1.. o Pe”zv"‘:;Pe" Ds
: P2 Dt 2 OXQ 2 aXp 7 B Dt
; N ” |
JFer 28y 9. D8 L 2 2 | B(q)
%5 Dy " P3G " 3%

% the second temm between brackets of r.h.s. being Cqy P Uy T



fis1]

[132]

= 40 =

The assumptions [56] [84] | give 3

k:i‘i'be’/
Then @

A@XB OXB

._’,_ .
because =0

P is given by [72] [74] » and with the assumpticn [118] by :

[
: Vusi‘i;gi ‘fonA ;he _ez;pressio,n [‘125] T

euergy for a rras, reads N
7[1‘34] |

_wel l«knmm turbulence energy equation (7, p. 65)

-constant

[ﬁsi

R T

B I ” OV” ) ——-———--—-——~ 2 yOV OV,/
| e D

o 5:2:6: The statistical equation [95] of turbulent kinetic P

i

LA -

._Q_l + 1PV =

Dz o ‘o IR g :
A TR TRy

= PXGE A +a§>ﬂ(‘Fana_A__pva Va Vp )

= OV = _"-a—p—

_ VII /4 C( - e

pa p éXﬁ' \P *O

In the case of mcompressible flmd this equation g.wes the

e = Cve+

ct : ',»i =‘cpe+.Ct.

. . .'.,IA"..- N



" let us put EHZJ g
[
[136] |

'I'he statistical equatians 'beceme T
' - for intemal and kinefic energy with[‘i 9 [50]

e

| 139]

e

s

N
Y I‘+

| ,[137] - |

.—L

. r;_

oo

fgﬁ state‘"[7_8j :

e =|+'”,$ l”=.-0
§= CV—G—“*' Ct = CP§ + Ct' ,
1)) } [ ”.: “
€" = Cy® - t:p e

A - 7 j
- T 5 = - o aogyro Co
, I‘= e,f%rva,vq . fr = € +vav“ ! VQ o oo
P . D (e VvV Ve D (P e”sv P vl pvevy )
Dl’,( 2 C(—C(,) Dt( x- ATy )
VI — OV -
a7an - a 2.1 YRR ”,” Tp"V” lpvll Vl[ g ‘é =
! 'Yﬁ'&_fé(e*i (1“\{1)-" (p a M IR ¢ ¢ ) axB =

PR (F5.7)

for enthalpy rw'it:rh [8'1] 3

~ A= A oV
p Dl . D ,p/lll u py _
DE "D "’5"x * 3%
l3 B
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for internal and turbul@nt kinetic energy with [94] s OF

by addition of [’138] Jmiﬁf}ﬂ

X 5 Sé‘ B p”@" pvu //) _7[;;7 S\?& _—'TV—';- E
—D—t+_[]_t:( +— O P + B_XB
} ’T/T P aV? S 5 7 V-'_,r _   " _
[141] | (P Py ) a%___ P XY *gga(raga . Q"P,e-' r
o 0Ty o = O o - Ty
V v v' v C( a B2 v |
PV p)-Fras 3 o%p %"P g X ' T (9)

- The tot’al a:athalpy in that case is. 3

’ ——<-,_____ AR
‘T='+-—5qua'= S f% Vo Vot + cc,\f ‘f’fzf-v ¥

- Let us set’

-then T Tl .
T T ,,—'--,—-‘,"1—',7#\7:;_
U B A S 8 4
fes]) -
. ru y ”
IT-_-I +V va_'"—VC(VC(”—-VaVc(

The Btatistical equatmn [‘105] for toLal enthalpy, with

constant CP » reads T

P _.Q_l1+__..D.—- PI."’. £ PG 2 lr P =
| Dt Dt Paxg’ ' o%g
_b - : e L —— ‘ oD |
o T A LT ' ,
| +e>><g( ap'a *lap'a + g -Pirg) + P

o‘co/‘oot’» '




one finds 3

L

In the cés.e when. Xg=0 = D (q )—:E , and with the ‘maé; balamce[’HS] »

this equation leads to the equation given by SCHUBAUER and TCHEN

(6, P 86 ; eq. 6-»4a)

Also with r.he statistical equation [107] s OF by addition of
equat:ians[MO] of enthalpy and [122] of I’inetic energy of the mean motion,

. A ____._ S nwen T 6 "y ) 6 e
P_D_(ﬁ%c(va)*.mp} Wy DG SPVE 2 (141
14 | ) B 2 [ (e P -]
|+ i +_“q | cc XB: ' a»ajfa—xa a »(I}ﬁ“r ® ,B)fﬁ,_w- Bl -
a‘v—r Vo 7 20 v 3V, D (q)
ABD st Baxy " )

The total cemperature 9 ", when the Specific heat CP is constant;~[:'108]

[97] [135] (6, p. 761) i.s given by
T yr 4 yZfyr -
+ VoV +% [ VQ'

[146] c eT-|T+C _cpeu\{lv ‘ p6,+£pellf

Let us put :

[47) | cpBracpBall Yy + LG G

~N

a

c "—-C euv—'vu lv" V{/. ..1_..V” v/
| P = a5 2 a

The statistical equation [’H’]] for total temperature with constant

specific heat C'P » Teads 2

el



e by -

[148)| + 0 Poyw ) PR Uy PN g + 22

T 7 e | o
"};‘his equatim’x 1eads to &:he equatwn given by SQUIRE (6, p. 816 ; eq. 73),
-~ for sla’w moi: ions, when - '

,‘,‘Pmo Xg =0 Faﬁ_@(Q) aE

] 2,,%«33. In the case of uotiom rela&:ive to cocafdigaate system
in comstant rotatmn, with a fix:ad axxs, ror relative to a planat the S
: follouing te:rms have to be’ added to the r. h s. of equaticms S

]

J PV or g P « ré“d;,.x'd ‘rreplacingi xa ) V, to equan.t:J.on,s[‘l22_.“3137]w N
- S 44045148
J P”V” 01:' g P"V” and Xc( replacing X(I , to equat10nsf|34]f137] -

[141] 441048

" The term g'p"V"; A given by L.F. RICHARDSON (3), (11) "teduces to

g p”V” when the direction X3 s vertical and foms basically che

f;numerator of his turbulence crit:ermn It corres;mnda t:o . productiorn»

~of turbulence by buoyancy. -

g 2. 9. I(; seems worrt‘h_y, to remaxk thé;t. with thg'defiﬂ_ﬂ;}bn B
of the mean motion used by method AR e is not very siﬁiple to cdh’gidér
the fluid enclosed by a suxface moving at th‘e megn velocity of the fluid
because there is a mean £lux of mass P” V" due to turbulence through

such a suxface.




VIi.- STATISTICAL EQUATIONS -

OF A COMPRESSIBLE GAS

BY METHOD "B".-

6.1.~- MACROSCOPIC QUANTITIES BY METHOD "BY.-

6.1.1. The esseutial prcpertz.es of a gas, at the coatmuum 7

' ,’scale, ar«e descrlbed by

AT o ,;p V,‘)Vz, 3,]) 7
r'ande OT)q;S, R A SRR

at’ various space points Xl xz 3:3 as functlons of tlme Lt

,and g ;o | ,or Iy ,

, ' I:: is uecessary alsa to. give defmxt:.ons of t:he volume forces
| ) 'iﬂ" XC(.’ Qf the 8pec1flc heats Cv and C; by means of relations between e -
o . Cy [63] , and . 20 [64] s and to specs.fy the relations:
- ribetween the rate of stram and the stress. C( [30] [©9] , ama between '
- , S ithe flux of heat and t’ne temperature gradiem‘ [56] . with definitions
S of t:he parameters [J. and k ' LT

- o The princlples of mechanics ﬂz.ve for the balance of mass - one
lrelat).on [1 7] between P and  V » for the balance of momentum three -

B ‘relations [26] between P Vo + P s and X :F(I , for the balance o

of energy ‘one relatlon [55] or [61] betueen e or | s P s ) p s

v FCI 5 and heat flux by conduction and radlation. ‘I‘his relation may be o
expyes”sed also in terms of e +5 V Vo [46] 50T l-,- [103] including

" The thermal equatis_m of state [69] gives one x.elat;i.on between p .

) P and '© . The balance of energy may also be e.,»:pressed in texms of ©
[()5] or[@ 6] » or [109] - s and 6 [67] » between these terms, P .
| peendcysCpsfogs by D(q). o

The heat ( and the internal energy ave related by the first law
of themadynémics ,[53‘] which pearmitis definition of the dissipative effects
as heat. The entropy § 1s introduced by the second law of thermodynamics

[60] -which leads to the assertionm that the entropy of an isolated system

must not decrease.



‘Then the fundame ntal xeiationa given by mechaﬂics and thexmom

dynamics determineg with the bcumdaxj conditions, the fuﬁdaﬁ&ntal ;.

'pfopertles of the fluid

. The choice of the most couvenient fundamentai'phﬁsfnal‘quantio
ties, and of the separation of these quantx&ies into macroscOplc and-
iluctuating parts has to be made, in arder to obtain the sxmplest forms of
" the equatloms for mathematlcal treatmant for physxcal moaning, an& for
aklng measurem9nts, '

6 1 2. The balancb equgﬁ;ons arb obtained by obaerVLng the

L o r T D o

thﬁid iﬁhlﬂ a fixed closed. control surface A, which encloses a volume (§2 )

of the space. through thch the £luid fleus, and @xpfeesing the budget‘

- within that volume of the transgortable quantities pY ; which are

7gxtens;ve because of their_dependence on the mass of the £fluid.:

Then, for a 00mpressible fluid, in which the. density P may be -

'varzable, it seems convenient to- retain’ the transportable quantxties P'T

per_unit-volume, the: control’ volura being constant, {. e.;;‘

P, pva,_pvaalpe Pi PIT,P,LL

To express the mass balance per unit &olume, we shall retain‘
the density P , or mass per unlt volume, which 1is already used as a.
: fundamental quantity. - O o S
To express the momentum balance per unit volume we shall retain

as a fundmmental quantity, the mcnentum per unit volume P R instead of -

the velocity vhich is usualiy employed That choice seems to be- the most
convenient, when the mass is variable, for statistical fluld machanlcs, as

‘well as for quantum and for relativist mechanics (D. MASSIGNOV' 17) (A.
LICHNEROWICZ; 20). When the mass is comstant the cholces of PV cor Vg

as fundamental quantities are equivalent.
To express the emnergy balance per unit volume, we shall retain

as a fundamental quantity, the internal energy pexr unit volume Pe . We .

may also retain the enthalpy, or the total enthalpy per unit volume, Pl ;

or plT W




a4t -

The pressure is an xntensive variable, wnich enters tha

equations directly [69] , or through gradients, associated {:4 6] with

the velocity or independently EZCﬂ P is directly measurable,lhe pressure

‘be, as usual, retained as a fundamental quantity. will

- The temperatura is an inuensxve quantlty mhlch is usually
~eta1ned as a fundamental quaatity ﬂavever in the equation of state 9
is 1ntroduced associated with P R and p 6 is extensive. Alsorwe'

may notice that whem the specific heats are variable and even turbulent

- these. quantltles are less SLgnificant, and it Seems ‘more convenient to

‘use the ‘enthalpy or xntetnalreneLgy equatlons rather than the tempetaturef,

>‘ equaaionsJ When ‘the é?ecific heats até’conétaﬂt, the’eﬁthalpy or the -~ -~

“internal emexgy per umit volume are CP Pe ,,Or CV Po- plﬁ&?f-rv

constants BEBS], vhich are extensive quantlties. ,i'r-j o Ej,}vrpl, o

When the temperature is measured 1t is convenieut to retain e'“"—

‘as a fund&mental quantit}. When the heat is measured ic seems more g-l?':#~

: coﬁvenxent to retaln P 6 as’ a fundamental qLantity.~

physical quantlties éf' ot ST o ]

[149] P, PY,p,Pe, e or Po, Ps.

, , 6 1. 3. In the general statistlcal eqLations (Chap. 1I, IIIr‘
IV) there are terws camtaxning mggrabcapic numntlties which have the same
form as the correSQQndiné terms in the Lnstantaneous quatlons. And therer<~L
- are also addltlonal terms representing the mean effects af turbulence -a ;':
ccnaequence of n@nllaear;ty in the averaging of the Lnstantaneous

Lquatxons which include turbulent fluctuatlons.

These adﬂitional terms are additional unknowns quantities.
Therefore the macroscopic properties are not completely determined by the

equations because these additional terms are unknowm.

The problem of turbulence consists im the complete determinae-
tion of such additional terms. A

u.n/ooc
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The additional unknown terms ‘which appear in the equati@us of
inc:crmpress:.ble tur‘bulent flows, such as [‘1 6]

A % % : oo -
O _p Y’Vﬁ the diffusion of PY by turbulence,
d X : - e

must be retained,in genéral forms with P randt}m.

Conc:emmg the other addlticmal unkncrr:s temas, we may look for

rv"eduction, when possible, with the help of the general equatia}ns, mt.c the

simplest and most sigm.ficam foma. S - j-_ - -

The si:aﬁlstical equahmns of mass [ 4:! a”zd of balance E‘ 6]

" show that P enters into’ several temxs,,ﬂe,may therefore mtain, the usual _

| ?éeparation':, : - ;lm_ - ,7;‘ ',';;">rr - ;  -

[150:] i P p + P :> p_ O- : P pl) [114] | '

These equations [1 4] [’16] sheu also that there are :  BT N _A —

a mean flux of mass due to turbulence P Vﬂ o

- "a transport of the macroscopic quantities Iﬂ',, by this )
"flux of mass : - R
; S S e Do
— OXB T . T =

c‘dd:u:u?nnal transport terms involvnxg P Vp

We shall théref_oré usﬁé“i:'he following definitions (2 ; e_q. 12) (8) for the

~macroscopic and fluctusting terms of : - o B :
. [ [ad » A~ ~
Vo= VarVa Yoo = Vax
1511 | ‘ ’ | .
[ ] o @ 4
’
L p o= p [ Ve =0

-00/0-0 .
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in order to eliminate mean mass flux due to turbulence, transportatiom °
by this flux, and all the corresponding terms of the equations. The

macroscopic velocity Q& will be named the mass-weighted mean velocity.

These dEEinitions allow consideration without épecial g
dlfficulty of the fluid enclosed by a surface moving at the macroscopic

’ veloclty Va » because chere is no mean mass flux due to turbulence
through such a surface. '

o These- definltlons are: convenient also for turbulence measurew,
ments because in hot—w;te anemcmetry, ‘the quantities measured at low

» speeds are the fluctuatioms of - PVh: and -of © :, and at supersomxc speeds
the fluctuations of P\Qx and- of a quantzty whigh 1is very close to the -

total temperature GT (16, p. 176), as” has been shown_by 8. CORRSIN (18),
rfL S KOVASZNAY (19)s amﬂ other authors‘ e e

7 In the statistical equations concerning the—1nternal energy[SCﬂ
’ f} B71] E;{} 3 there appear the additional terms : o B

- - o -
: -'"~’,'#wf‘—* r"-‘" OV~ - . e T T
o -Dope o Pe __ﬁ_ P T
“which do not exist in the case of incompressibIe'flow,fandAWhigh»ﬁay:béfig

" removed by the follewing defimition of the macroscopic quantitieéEQQI :

B O B

‘Thé”mécroséopié intefﬁélienéigy péf unit volume P e is then the mean ff

- va1ue of the internal energy per unit volume l’e .

1he statistical equatlona of state [78] s of motian E33], and

of total enthalpy [107] , and the fact that p is directly measurable, show
that che usual separation is comveniemt say - '

[1s3] P=F+p = 7=0

Y



' the methed using 9, 0" permlts removal “of additional unknown terms

=50 =

Concerning the Lemperature, when the sPecifid heats are

constant 3

. - T L . . a t
: L
we may use either the definitions by method A"

-1
|
=

[114] 9;9?9 | @_LO

B I R R L L L

- or the follovlng definltlons irfv

V_g'e R 7, :
154 e = ey = o L
' [ ] , Pe Pe T~ Pe'.0 T | =cpe+CL, - cPe'

The method using 9, 0" s more convenient for. usual thermal maasurements

" in the equatlcns, and could be more ccnvanient for caloric measurements./f

, thh these. definitions of fundamental macroscopic quancities
many. additional unumown nonlinear trausport terms in the equations are.
* removed. Since the physical interpretation of the Lerms thus eliminated

A“,ls not simple, Lhe physical meaning of the terms remaining Adn the-

equatlons 18 clarified

------

Sy

9

' ] . . . N ) ) — R — R - ~ . o N N : . -1 - ) . :
6.1.4. The macroscopic quantities W. or W - and fluctuations .



areb rtel‘atked"- by A:; :
[ W
[156]

and by H

"

=
=l

e |

|

=;‘I¥>’ "’»:.
| Tw Tew

“Tow

L . <'}”l,r,;L,iﬁ‘f - -
w59 [ -
" mhen

fieq]

%= = "oe
5—5 =’P

o

L

When the correlation coefficients vaa Ppe

b

w*

P

.;ém~

]

oo

1 owith_1<

are null,and for 8

being the correlation coefficién&”betwéen' P égq“VV; S

r. <
Pw

+1

when I is null, the methods "A" and “B" are equivalent., This is the
Pe , . _

case for incompressible flows.

erelone
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Vhen the relative erroxs of measurement of the‘ﬁacroscopié
guantities QV or W equal or exceed the product of the correlation‘
coaefficient betweem . and W by the intensities of turbulence of P
and of W | the methods "A™ and "B give the same rvesults for w o
and W . Since the method "BY gives simpler forms to the equat;ons,

it seems to be more convenient.

" 6.2.- THE STATISTICAL EQUATIONS_OF A GAS, BY METHOD "B".-

B Wlth .ne definit;ons

feopr

160y S o) L O_(L

B

' and, when the Speciflc heats are constanc with _*ﬂ~'?l[ el el

. - - F o ) . ) M » R . _
ey | 2708 L T

0= 6 40’
aud uuing the General statlstlcal erugtion:, we obtatn the staaistxcal

,CDI‘

I

equat*onu for a compressible turbulent gas, by method "RB".

mass read ( 8 ) ( 9 ) (12 ; eq. 8)

t-u/...



" The physxcal meanino of the'varlous terms in these equations corresgond

25, 2 5y _ D
3% v 6Xﬁ(pvﬁ) ( )
E‘é@] 1 II L
1 _-ov' —
Dp P B _
_ﬁf + P = ( )

=
< &
=

~-to the mean rates of vartations of P pex uﬂit time anﬁ per umlt

<v01ume accorﬁimv to-¢ B S A R S L . -

I Vs_local chanoe,

11 ’,é‘cﬁange by »onvective traﬂzpﬁrt at the macroscopzc )
',—velocz.ty, T R NP
_III = change by—localrcréat{qﬁ,ét'destxdcéion, L
VVIV, 'é’chénge seen by an obéeﬁver,Eolicwing“thé'macrascopic
" motiom, . 7 o ' )

V"~ "= change byfmacroscnpic'vafiatidﬂ of volume, or dilatatioa.

~:Im each of these equatlom the three Lerms camcerming the mean ﬂﬂSS flux

_ due to turbulence are vemoved bj defxnitlen of F’VY v

@ A @ @

~6.2.2, The stati tical equatxon Elé] for balance of a trans».f

' f@rable quantity PY , with mass balance, and with

g [ vty 0T
‘reads |
1es] | 85% .75 B oL 57 20 L 2 5w . DY)
- Dt Dt 3%y oxg P
I I mM N Y W
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Phjsicaily [ﬁiﬂ [13] [16] ~ the terms of this equaticn 4ﬁscxibe the
mean rate of vaciation of PY  per uﬂit &im@ and volumn by :?5” :

—— PP

I+ 11T = change of PY follcving the macraacaplc motxoa,}
taking sccount of tha meam wass balance

and of the macroscopic dilataticn?

IIIiQ change of Pf{ aollawing the macrorc0pic mctxen,w

T s
-
i

change of P‘Yf_iuue to the macreacopic dilatation,

e

V. = change by tu;bﬁlent:ﬁonvgctive éiﬁﬁus}gn~of;f?Y

read . ( 8 ) ( 9 ) ( 12 eq. 11 )

-i-?v e BTy - o
166 Bl , & D(p) 40 PV V= PX op , %ag _ D
[ ] Dt & P) axB BT Exg axﬁ ( ')
S AR G T X Y o
) givfmg the meua raﬁes of varlatlﬁn per unit time and voluma of F’V bYli
14+ I = change of P ”  golluuing ‘the macroscepic motion,

taklng account of the mass balance,f‘

o and of the macroscoplc dxlataticn,:

11T

= conve;tive diff031on of P V by turbulenca, ;» 
Iy’v = external forces, : |
V. e pressu:e gradient,-€; 
VI - mélecular friéﬁion sifésg'téfﬁé.

In each of these three equaticns seven Eefms'are removed, by definition -
Of X pv\r -"A 4."‘../...

[ —

ﬁ.(ﬁ?)ﬁ .__VE__‘ 0 . ¥ () with [i‘éaj‘
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'For a newtonian gas, with [34] v[‘l 14] ‘and the ’e;ssx.\mption [38] "
1mp1yi.ng T '

g | pemesor

the x‘elatx.on [39] gives : | |

.4_[167]_ |+ 2E (O, 94)-§_vu;___@_>+a

the add';é;azs;i,'t;amg_ -

o [ 3% fﬁ)-% s avﬂ

ax;e‘ vu‘shal ly heg‘}:igigtle .
| The va:iable - may aiso be written PV r,ﬁwith th,e: kin;z’zatr:‘i’c
visédéity YV ; and thus Boois extensive. ’
Let us set, with [34]
(e8] [ w=f+w
‘wit'h [114] ;md the assumption B8] -

[169] [ u;ﬁfae’ :$ ﬁ:ﬁ-;a(g_@)
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The r.h.s. of the equations of motion read [39]

S - TR P Xa' g
- I17CU L P e
_ . et .
o ] v a e XM 16 D (Q_VQ..M)
' - 'O:XBOXQ 3 OXar 6XG

" The following (aadjﬁe;iioﬁglftﬂ_efmé R

(2%, R ]
axﬁ oxﬁ axa IR T R E
being usqally negligi'ble. ', : - . L

. ’Phe statistlcal equat.ions [43] of motion for a fluid relative
s ,to a constant totation coordinate 8ystem read (BLACKADAR 3 11 3 eq 53)

B~ = 3F
o 'p%f'*hk@)?P Gfm& ﬂﬁp(rﬁ‘pvﬁﬂ
L

. _pJ(I.;.zCa'B? pr B

In. the case of mot {on relative to a plénet 'thg Vr;i{ghg&}ggnd sides read

72 | exe L2
[172] o« 3yt

(Fﬁ pv vﬁ)*pg’fzapy Y ﬁ

X8
In each of the three expressions [171_] 672] two terms are removed in
Coriolis force, by definition of PV '
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L6304, For energy we consider the case when t‘ne mss 1s

i e oaaos .

conserved f45] “The statmtical equat:.on [50] for int:emal and kinetic

energy of a gas reads (12 eq 24)

"B

e e,

—_—

.1 = change of Pe+ P T follwiug the S

LT macroscoplc moticm, mass balance

T o i anzi macroscopic d:.lai:étion accounted,

“11 +  IfI]ir,, = change of kmeuc energy “of turbuleﬂce £0110w1ng
| | the macrosc()plc m°t10na ‘and in macroscopic
dilatation, s L

' I.X + X + ﬁ{Ia ;:onve.ctiva d:s.ffusi;on of P E e 1 pv
. IV+ V =workby e;:i:er:ia'l .quc;s,
7 VI-I- VII' = Q;)ri; b}}' éurféce molecuiar friqtioné," :
VIII + ';XIV = heat £lux, by conductiop and rad}:atian,z }

© XII 4 XIII= wyork of pressure, in the motion. .

In this equation eleven terms ave iemoved by definitions of PV'Y and-p—é—;a

easlen.
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'1_~~__a{1"E)V’.:a R
P'Q%?‘p‘pﬁ%"?a%f@xﬁ(‘h" “) .m

or

bt
Si

copic dllatatlon and mass” balance accounted for,;;if~urﬁ’

Pt
bl
i
5
fobo
453
[4+]
s
-]
o
(x4
oot
=]
B
o
&
o=
[
B
g
: U‘
<
=
Q
Jood
®
Le]
=
pec
e
2}
[ 2+
v
o
&
x4
'é?
&
LY

- work of pressure, im dilatatiom, . .

SRR {\p,@up:g'

for a common gas, with [7‘ﬂ E75]

these functions read

i : r,_ i N é
[175]_ -t lp - 21

[176] Vobn 02y

'change of pg following the mgcz@acmpic moticn, macros« - i f



Ulth the assumptioa [.38] s the relations [76] give :
with the definitions [114]

[1 14_] B54j .and thg duS\ImPti.Oﬁl [84] lead |
[179] [ K b-:- be ,[131‘1

[180] __.__E= 756“ (k 28 +_£,_ ﬁ’)'z—?iié ['E ‘35.{5 (:1-;.'6 o2 +éve>’é’ )J

'GD
‘:><
Ko

These expressions are nof as simplé as the expressions for QA‘

625] ’ _*{—;'7 [133] » gﬁ [132] obtained by the method "A'.",
X|3 : : :

. -=—T- ! —_'- .
because VCI o+ 0 .9 + 0 .
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- 6.2.6. The statistical equation of state [78] reads

(8] [ﬁ il (564,;7?)5??5

wh}_ch has the same form [139] as given by mthod "AMhen 8 is used -

when e, is used the additional term pe’

5 mpresemimg the mean effec&

of turbulence,is removed, By definition, -

. na--.p

6.2 N ’Phe “enthalpy [59] may be a'tsa separated mi:o a

macrescogic pax:t T and a fluctuatifm .' l' ;r,z:fv L R v 1

'then [’jsz] [153] B e

Lgt us set:. e \

f1a3] [ aﬁf:s T

"i‘he atatxstlcal equaticn [81] of enthalpy then reads (12 3 eq. SO)

” ,+ DE 9-5_ OXQ( hB_Pl VB ): l) (q)
I . N Y WV

: f-'iving t:he ‘mean rates of variation oer unit time aud volume of pl

) I , = cnange of P 7 follouimr t:‘ne macroscogic motion, :

macroscop:.c d:.lataticm ‘and mass balance accmmted Lox,
T = dissipat.mn as heat,».e "

O IIL 4+ 1v= change of pressure following the instantaneous '

motion : _d_P_ ‘ ’v:’; ,}
dt - .

transformation between enthalpy and kinetic energy of

i

v
B turbulence » because this term appears with the Opposite
sign in the eguation of that ener.,y,[1 89] tems

V111 and IX,
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Vv , VII = heat change by conductionfrand rad;ag{§5;”
Vi = convectiﬁe tu;bulént diffusion of Pi o
In this equatian five terms are removed by definition of E;%; énd'577 .
é‘..g;g;g The statistical equations of heat transf.’er [85] [86]
- in the case when the specific heatu are constant read : j -
SR cw" _ﬁ?’t Q_Pev . ©with [154]
I s ) *
B - = & ,7 v @v' o uilh‘
~ [8s] | =c,(FRE.D Pev, e _B . 2 PV ) with [114]
R VYDt Dt  O%g dXy e
195 28 %0 B
1 = \P =S P a o P - + . (q) o
_ | I m N ¥ W ~
o leqa(PDe . O peVi Y= . with [154]
BTG S 8
nss] | =c (5»@@;_6_5? Al o'V )= with [114]
| P pr e o axB oxB” ces= TRL
, o Oh b ,
- 3. DP ,Z) ;
LI[‘ZI]I, ]TS[ Y v -

giving ﬁhe mean rates of wariation pev unlt i:.me and volume

of CyPo [185] by :

I = change of Cy Pa following the macroscopic motion,

macroscopic dilatation and mass balance accounted for,

Vi = tmbulenﬂ convective d:i,i’.q,,s,uf;ions .

the temms : I, III, IV, V, VII being the same as in [174]

ou-/oua



of Cppé !38@ by 3

change of Cp PB £following the macrbébepic ﬁ@tiun5

macroscopic dilatation amd mags balance‘aQCOuﬁted)for,
Vi = turbulent convective ﬂif&uﬁlﬁﬂg

| the tewns II, III, IV, V, VIL being the same ‘ﬁs in BB{]

In each cé' these equat:iom EIBS] and Eig(ﬂ ,' three temo aze removed
by dexiﬁitlon of F)VQ s @ and. wheﬁ 6 18 uueﬂ two terms more are-,

removed Dy definlﬁion of Po’ .

R VI
2 %va

"change follswing the nacroscopic moticn, macroscopic

dilatatiom and mass balance accounted . for, ‘:,,,

é non«dissipative wor k by Y-' molecular friction » in

‘"}tne macroscogic motion,aa

.....

Bt
i}

f'fwork vy the. tuzbu‘gnL atresses (3V' ﬁ - in the»

macroscopic motion,;‘;,l;

v = Lransformation of the kinetic energy of the macroscoPic
motion into kinetic eneray of- turbulence- i.e. minus
" the productlan of alnetic energy of turbulence, since

this tern appears with the opposite sxgnAin the equation
of turbulent kinetic energy Ei%;ﬂ R

v = dissipativo work by ' molecular friction', as heat, _

in the macroscopic motlon,



3

VIl = wdr_k of the macroscopic motion against the pressure

gradient.

In this equation nine terms are ‘remwed, by definition of PV((

. For a newtonian gasr [93] [98'_]7 -

3 "'f‘ Lo ey s o V~ @’Vp.,;g T
i T
- and t-nth the assumption [3 8] [118] D(SQJ -
T 2 T
o ' d ~ T D g — > ) A = OVAT v -
LT 33(5( C‘FC‘BLSXFS(VC(W] B)“?a;(‘fa»“ 57% R
S d (o) 2a O [(rer-o B Y
- +a'57<‘é(VQQHQB ).__5.63(_&@OL 0 T‘E):’;’
_ O (pi—y -2 9 (pa s
= 5% (g )= 5 5 (o 55
+ ai..(?’e’n ‘)_:?_é'ﬁ'__»(v“ eﬁ&
dxgt & 4P RS & Taxg i
@vg_gg_' The staﬁ:istwal equatlm [_-95:} [98] “of curbii;ent
klnet:ic energy for a gaa z.e&ds (12 ; eq. J,L.,,) '
S [ f : A
- —_[J_lpv’v’+j_9v&va_@_:
Dt 2 2 éxﬁ

[189]

YL ) NYEY . 7 év’ é ‘_’-,5_—’
- ?Xava . 63[3 (Fag"a - 1PV VR)- PG BX—B_‘P aafa v“éxpa
| il I\ VA Vi VI Vil IX

oo-,.he
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- G
giving the mean rates of variatiom per unit time and volume of 1. Plkl
by s |
I = change follewing the macroscopic moticm,
I1 = change due to the macroscopic dil@ta@iﬂn,
V = turbulent convective diffusion,
III = work by external forces in the &urbuléntAEluGﬁugtiqhé7:‘
of velocities ; iet'uswﬂeﬁie@ that wgth" L
Xy = & Ky o R x s DXV - PNV
a="ar Do Sl = a-a« - T
IVA = pon dissipative w@fk by , m@i cular fr;ciigﬂ iﬁ-thé~;_r:,«w
e turbmlemt Lluc&uatiens Qf v&l@c;&iess e LT L
}Yi';srprcductiam of kiﬂg&lﬂ energy Qf @urbulenceg by B SRR
- i}trmmsformatian Of the kinetic ensrgy o£ the.macroac0picf'>*f-
I mot;x,cm [187] ’ :
 ,?11’¢ &1$51p@t1ve wgrk by : moleﬁular ftlction ‘g as heat, <
. 'fin the tu;bulen& fluctuatioaa of velocities, Tl T e
:VKII + IA , traﬁgfermatian betwpen enthalpy and kinetic 'i' ﬂ<1,f;
energy of turbuiemca[ﬁf%%} by the work of che“’4ﬂij~r~ )
fluctuating zurbulant mctlﬂn against. the pressure gradient.
In thls equation three. terma ate rem@ved by deflnltion of P V ,igi,.w

ThlS equatlen is- in agrement with the equation given by

BLACKADAR (11 ; eq..6 15) for atmospherlc turbulence, but thhout separation

e

of the turbulence in to two domains, as he does. -

6'.2".11_.;" For the total enthalpy [9 7] BBZ]

- ™

. " RV
let us’ introduce the defmitlons [151] [1 83]
‘ . X - ° g 'Y [~ 2y '\‘ Vs
: 1 4
: : Iy = Iy Iy . 'T"*VCIVCI"'—Z'VC(VC(
E‘QCH 1 om——
: AR R R 0y | M AR
T *sa'a T35 a
i i y




v "Ihe:st:atistvical éﬁuatioﬁflOS] of total enthalpy then reags (123 eq.: 54)
r . A o ’
s ~ny " _— v . .
4 p Di LDopirLpil OD 20 P]’Tvb___
i~i,.I: . II_ ‘ HI ‘»Pz R | o
BT | o
| KRR TR0
vy W W W K

_ R I DU — A - L -
¢ = change of P IT N iollavn.ng the macs.oscopic motion,
S T u—acreucogic d;laaetlﬂn ::md mass. balance accounted forp '
kR ;1’17 _i = change of P IT tollmzing t"xe macroscopic motion, -

‘il'_

) e S ‘ 11T change;of. Pi "r in macmscopic dilatati«m, S
- o o IV = gurbu’ieﬁt ',conilect;vaud:,ifuualonr of p IT.«; ke

mean local rate of c‘hanga of "prasghrea!

- V':i:n
. The ﬁ;erms V to. L{ hzwe the same physa.cal meaming a8 m the

| . - precedin" equa%.ion..- [:184_] [187] [1 89]

7 Ulth the statistical @qua!:mn [107] , O by additicm of equations El84_]
of emhalpy and [1 87] gf kineit‘ic @nergy of the chmscopic motwﬂ, . we
S have [‘183] (12 5 eq. 55) ‘ o

C oA ~ 557 .
. - T pD(E. P a0
7 8 ) G5 R)-
1 A
= O N ] 7 h_ p'vl pvl ¢ éva
v =P awxa[“a” P - P[Pt

- - ) a
Ny - o2 vH

i - - o S Cidens

" ziving the mean rates of variation. per umit _time and volmagabﬁ QP;I,—{ by -
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5 giving the mean rates of vamatmm per unit tm and voll..ma of P ET ~ by:
I = change of P !T rollm;izlb the muGIOoCQPiC mos;ion,
macroscopic dilatation and maus balaoce gcccmn&:ed.for,
IT to XI having the same 'xhjsi‘f*'al meanings as in the -
equations [’184] [’_187J [’189] @9“_{]
| ,In this eouati@ﬁ, n:me terms axe r@ﬁmfed by @cfinitit‘m af pVB ' _"l,i:‘-:-.'_f"and
I two temg axre r@mc:veci by aefnuﬁ«m @f Pl : N
’ o '  - " "e may ﬁOtl‘"E th at- ﬁ@@j ;325: .
193] [ xrevire. O TPVG VG +PIVE =2 O va’m;LPv Vv ) !
1 fz mn XB( ap - .,B)f axB< Mhoptlata )
A - chn_}g For the total Lempomﬁ;ure, when the SpPleiC heat C-P
is ccmstant [’108] [97] [135] !
: TV:: I s :
T flc..iz us sm:[@@] 583] LDl -
i . ) ;\, 1 r N Ct ,'i\’ 1 ,V\AN 7"]‘“
oo 9T<=?T+6T N v C ] CP,eT*‘ = '*'-—2— ara'z— T
S . . ‘ I cqgPel =1L pviy -

. The staﬂstﬁcal cquav ion [192] tn i:erms of total tamperature reads . S -
‘“{;(12 3 eq. 99) - :

:7vp ?P

S
ll
o
R
F
[e%
>

57X, Vx—f’—{\?r: V“FF';:PV' (0, s )] g

| | T A TR s M T (9)

| v ww wmw X X __
giving the mean rates of variation per unit time and volume of Cp P er
by : ' o ‘

VR



B

fes] | eper-

it U" st

e ~ R -
1 = chavnge of Cp P 6+ following the macroscopic motion,

macroscopic dilatation and mass balance accounted for,

XI and XII = convective turbule*m diffusion of P C-P 91-

minus the kinetic energy of turbulence,

‘II to X havin{, the same p‘nysical mfeanings as z.n the

. equatfon [_3192]
W& may not.iae that El93] 654]

[197] XI 4 KII:;.é_OX_g_[pVB( P ’T —-%-w V&V&)]z——éﬁx—g(%pva QfC'PPGV,B }

L‘he other separatmu of the total ta,mk» erature - 8+ may ba used also,,

,correspmdmﬂ o Cne derm;tmn nade hj method “A” [147] s

[ 0 =8, +9T —— :191'7?-071

| 'ibut w:.th [151] thig luplies 894]

o - - - . - - -

e 0Tl T LYY
o - »C’Pe’f*z*ayaf aa’zaa

l\
[}
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+
-
R
~
<\ ' f
!
=4
.
~—
&+
-
-l
Ay
-

Pefr’véch ra\!B *v P B p“'éxvczvﬁ

" The stai:lstical equata.en [11‘1] Df tetal i.emp@rai:ure, wha,ch ‘has been '77 )

:,obtalned by average of Lhe imstam,aneons ‘equation [‘1 OQJ » reads 3

-

5 35 7o 3B )

[os] v‘:‘%(;}wxaa X@(F‘;3 F;B“hp cppe;vb),
Lo, o
D0

By addition of the terms of the statistical equations E]86] of heat
transfer in terms of © and 0" 4pd D87] of the kinetic energy
of the macyvoscople motion, or substracting from E]QQ] those of @89]

aanlseb
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.we obtainm another equation

r - o e — i
p D 8. 100 )Yecn D_pe” ,cpPe” _;9_...
P 5t (p3+1 () P oL P 3%g

[209] | :ﬁ’g.*_é_,a,[g(rag_ﬁ_pv&\,é)%_hg_,épp““lgvvb)

6.2.13. In the case of wmotion .relative to a coordinate

21 o s T >

-systen in-constant votation, the. tem e

9

- ‘TC( p Vd ‘ have to ‘be added to the right h‘a;hd -
side of the equations [137][:] 7377

BQ'I”_:I 92] ['1961 [199] [200} for kimetic energy of the macroscopic motion.
“MNothing has to be added to the equatwﬂ Elg()] of turbulent kinetic "

energy A 'becauee H

- Jq, & VCL _—_;O by definitiam |
o = iﬂ_ ;tlixfé case of motion ?elativ%e'jté a planet, the terms. .

gC( IE ' nave to be added to the r.h s.' of the

- same equation [187] , and X must be replaced by X . l\aol;hing has

to be changed mto t‘“xe statxstical equai.ion of turbulent kine::ic energy
[‘1 89] becausa H o

9 p 0 by definition,
and also because the gravity being assumed to be. non-randem, the fluctuation

of X(OI are equal to X .

We may notice that [151]

Dwv. orur 7 :
pvazpvqi-pvazzo :$ va::-— —

sn-/ooo



massor th e vt 105] 115 on 7.3 e ) ¢

I ) | '*": ) ' a’—:
[20 1] VILI cc P _ p_v_a P
i . GXC( P Oxa'; . -

orrpsponduto the work done par unlt time b the mean pressure gradient

force onA“he eddy’motion.

For atmosph@wgfollowina uLACKADﬁR (ll

-ﬁ%eﬁlthe> X3’

[zos]
P T ", It appeavsg therefore that an approxlmate eqLiValence ey1ts
gﬁi,;fri : between this term VIII 1n[ﬁ89]and Lhat Jhlch accordlng to’ Ricﬁatdson NS

};'" ‘;‘:"to the abstrabtlﬁn of turbulence energy, by workinﬁ against the Iorce of

. 'gravity, or to che producnlan ox turbu;ence by buoyancy.

,,lnterpretatlcn, representﬂ eday work aba inst éraVLty. The later cocrespon&s;,rr
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VII.~ CONCLUSIONS -

= o

7.1.= The statistical equations of a turbulent compressible gas,
considered as a cdntinuum, have been deﬁelop&d, in the gaﬁeral case when
all the properties W guch as the velocities, density, préSSUEQ,.internal
energy amdvﬁeﬁpegatmre, even external forceégénd also the bulk pr0pe?§ie8
such as viscosity, heat.conductivity and 3pecific heats afe Eonsidered

to be turbulent and when these random QLbntttzes are separ&ﬁed into '

% -
macroscan*c parta VV amd flucLuating parts VV' in a genexal fomm'r*

f',;igfiﬁ 3 v
[ waWaw o ovch that [3] W W = [4]W ER
_ 1his _set Qf amalytical exprQSaionu, can be Lsad to ‘make. the
choice of the defin;tions of tﬂe macroscoylc quantities that 01ve, for

- different flelds of anplieation the mcst convenlent form to the equatmns9

- for mathematlcal Lreatm@nt for physical meaning, and- £or the performance

of measurementa.ﬂvj"

C7.2.= These equationa have been used to cemplete a set of analytical -
"expressaans, by the methcd "A" whlch exténds to csmpressibla ”lows the '
" elassic procedure used for lncompressible Elowg, i, e. the macrcscopic

B quantlties belng ﬁhe mean values of the randcm quantlties o I
[112] - vv W $ w 0‘;

The equatlons are- written with the following fundamental

macroscoplc quantities [ﬁ14]

— —

p q H P ? . : ’
and when the Specific heats are constant, with the quantxtxes [13 6] B43]

[1 46]

,mm,ly-,



S ey

- surface.

cor 07, afsd nm dxrec..ly VC(

Somé "saurce" terms are simplifled, such as viscosity terms [119]
E]ZS_] E133] s, and heat conduction tema @32]

Eut the state equation [78] is not simplified, zmd tal&! equatxms

AN contaxn all the addltixmal umcnotm nmnlinear Lransporu Lerm.?. 01. the

general ecmac a.ena s

The hoz.—wz,re anemeﬂeters meaaure the quemtii.:a.es p VC( and © - :

ueae 5enei'al equations ‘have been used then to complei:e a ‘set

) of amalytical e:apressio—ns by the- method “B_" , gxteﬁding co the gemafal

coanpress:.ble EIWS a procedure ua.ed for atmospheric turbulence research
The equahona afe written w:u:h the- follm:mfr fundam«ental macroscupic
quanti.ties [’1 61]

el

p —»50&=p‘-‘ 7, PE_PE,

Q:
’.i
[

=
m .
o

=4
f’:%
a4
p.

v

bty

fo

[+
I—Al
OO
L_.l
-
.
A=

ﬁ’.\" N === I -
l‘=e“*1’/‘°~1' r=tey ey

and when Jze saecific heats are constant, with the quarxtii.ms‘j]é%i [:195]

[1 9] :

Bor PO b—_ Cp’\;.giT-&-Ct
B — A A A —_——
[s) 4 C'PGT_. CP§+%V(I\{3(+VCI (I-)-ZV Va

Some “source" terms arve simplified, such as heat coa.auctf on

terms 180:] » and viscosity texms [’167] ,[’1 77] ) but the simplifications

c-s,{las~m
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uf the last terms are legs than those obtaiued by method "A"

“The state equation [’1 8‘1] is 3imph.€ied, with method "B" “and
also many additional unknows monlmear Lraa:mpmt terms of the geueral

equations are remmred L.e. 3 ‘ .
'. all thmse terms im the E(gue,i,lon oﬁ wnass E]@g]

,_'t"seven in each equation of mof:wn [:’l 66] » ‘and
 two in each Coriolis force com.pom.m [‘1 71]
eleven in the ekxuation of im:ema}_ and kinetie
eﬁergy E]?S]

R ,;flve in each of the e(wqtioma oﬁ mtemal enm:"? D 74]

enthalpy El84] » and heat i:ran fer [’] 85] [:]86] ,

"nine in the equaticm of- kines.i.c energy of the .

wmac roscoplc moL ion El 8 7]

throc m the equation of mnetlc enexgy of turbulence [‘159]
and three in the Coriolis forre i:erms (6.2.. 13)), .

eIaven in the equatum of macroscopic enthalpy, am.

lfineﬁ:i.c enetgy of the mean motion [192_]

",#,VSnce the’ nhysxca]. interpretation of the terms thus eliminated 1s not
- smple, the physu:al meaning of the tevms renaining in the equations s
clarifled Especially the consideration of the £luid enclosed by- a surface -
moving at the mean mass—seeighted velocity V is simple, vbecause there e

“ {s. no wmean maxas £10w due" to turbulence through that surface. ]
The t:erms remaining'i'n the’ equat:ions are . §

tnOSe containing macroscopic quant‘ ities which have the same
fonns as the ccrrespondins, terms in the instant:aneous

equatlons,

| additional terms representing the mean effects of‘ turbi:iehc’e,
which do not vanish in the equation of incompressible
turbulent flows, and which for compressible Flows are
‘more ge'leral, such as E165] ‘



_6___ oYV, : COnveictive turbulenéii ffus io}u’;‘of PY,
T~ ————e R i Ll
- D apy v rate of ¢ change of mean kinetic
DLz «a con

' _“energy of turbulence follmvim the macrcscopic motiou,
Pe”_ - when ©

R :?,‘ﬂmi the sane fofm o<‘ Lems vhen PY
= 'fmis used, (but not when € is us ed),'

| T"gradiants s

B : o | . —?7 dissipaticm as heax‘: of tuxbu‘ient o
i} ) Rmetic energy, _ 7 :
T T S V& Op ¢ mean ¢hange of t:v;z-x:bu.’l:éht kinetic S

euergy by action of pressure fluctuatwv \ g%:é&iyénftfs,»

in tnrbulent motion, . B .

} uddlciﬂhal tems raprcsent.ing the mean effects of turbulence

wnmh appear with cﬁmprr-samil.xty, or di!.atatlcm,

~such as 3 - o
OV, o :
1PV V. _ B rate of change of the mean kimetic

energy of turbulence in macruscopic dilatationm,

v
— B wean change of internal ener y by
OX B

action of pressure im turbulent dilatatiom,



- Tl -

s, .4
(1 ép PV Op mean change of turbulent kmetic
an p OXC(

energy, by action of mean prassure gradlent on

turbulent fluctuations of de;ﬂ.sz...y and velocicy, ,

B ? oV [} av . mean digsipation as heat by actiom

of viscosity- in; turbuléx.:é&:* dilatation, _ .

mean effects of

addltzcml tem&s corresrcudmg to R a ‘
 turbulence of exte"nal forces X ~, viscosity, heat
' conductw;.ty. oL e T LT e

These terms reznas.nmg in the e.ouationa nave relatively simple p‘nysical

in*erpreﬁations. -

‘_.-—» . L . oo . e _—

o f‘on:.,ernlmo the performan;e of mea»urements, the hot-xgire

anememeters ‘weasure the quantlties PVa . end @ or 6; , for t:he e

con51deraL ion of wzuch ‘method 5" appeara to be moye convenient.

.= ihe e'qﬁ:‘a’tir.‘ms'cﬁvtainéd by rver‘mds A and "E" are eqixi.'ﬁaléhr‘x;: ;,7: L
 for inccnk)resaiblo fm'w, and For fle\:s in which the correlation coef- |
ficients PV Pp e pe beL\.»reen density an.d velocity, ’deusity
’and 1nLernal energ,y y &ens’ity 1~d terperat:\..re are nul]. They are -
practlcally equw'ﬂent also when the- Yclat:we errors of reasurement. o£
| the macrosccplc ‘velocities, and internal energy, ard temperature excead :
tne product of these correlation coefficients PV pe » pe 9
by the 1nl.ene.z.t1eb of turbulence: of density and, respectively,of velocities,
internal energy,ami temperature. Then, the method "B" being simpler,seems

to be more convenient than the method HAY,




In general cases, when the differences are sxgnifiﬂant tﬁe
equations g have gimpler mathematical form and simpler physical
meaaning: than equations A, and seem more convenient in the theoretlcal

point of view.

From the experlmental point of vieu, emplcyment of the two
methods will gzve the final conclusxanz comcernxng_thg most c@nvgnien&,‘

‘ for each field of applleatlons.
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